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Abstract

We present a new methodology for the characterization of the metric entropy of infinite-
dimensional ellipsoids with exponentially decaying semi-axes. This procedure does not rely
on the explicit construction of coverings or packings and provides a unified framework for
the derivation of the metric entropy of a wide variety of analytic function classes, such as
periodic functions analytic on a strip, analytic functions bounded on a disk, and functions
of exponential type. In each of these cases, our results improve upon the best known
results in the literature.

1 Introduction

The concept of metric entropy has traditionally played a significant role in various do-
mains of mathematics such as non-linear approximation theory [1, 2, 3], mathematical
physics [4], statistical learning theory [5, 6, 7], and empirical process theory [8, 9]. Re-
cent advances in machine learning theory, more specifically in deep learning, have led
to renewed interest in methods for metric entropy computation. Indeed, metric entropy
is at the heart of the approximation-theoretic characterization of deep neural networks
[7, 10, 11]. However, computing the precise value of the metric entropy of a given function
class turns out to be notoriously difficult in general; exact expressions are available only
in very few simple cases. It has therefore become common practice to resort to character-
izations of the asymptotic behavior as the covering ball radius approaches zero. Even this
more modest endeavor has turned out daunting in most cases. A sizeable body of corre-
sponding research exists in the literature [12, 13, 14]. The work of Donoho [15] constitutes
a canonical example of the type of asymptotic results sought; specifically, it provides the
exact expression for the leading term in the asymptotic expansion of the metric entropy
of unit balls in Sobolev spaces.

The methods for characterizing the asymptotic behavior of metric entropy available
in the literature are usually highly specific to the function class under consideration. The
survey [16, Chapter 7] illustrates this point in the context of complex-analytic functions.
An in-depth study of the variety of methods available in the literature leads to the insight
that the underlying ellipsoidal structure of the function classes considered can be exploited
to formulate a comprehensive methodology and en passant improve many of the best
known results. This will, in fact, be the main goal of the present paper. A first step
toward such a general method was made in [17, 18] by computing the metric entropy of
infinite-dimensional ellipsoids with semi-axes of regularly varying (typically going to zero
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as the inverse of a polynomial) or slowly varying (typically going to zero as the inverse of
a logarithm) lengths. This approach was applied in [17] to recover the above mentioned
result by Donoho.

An analogous result for exponentially decaying lengths of the ellipsoid semi-axes does
not seem to be available in the literature. We fill this gap and develop a general three-step
procedure for the computation of the asymptotic behavior of the metric entropy of a wide
variety of function classes. The versatility of our theory is illustrated by applying it to
classes of analytic functions on a strip, analytic functions bounded on a disk, and entire
functions of exponential type; in each of these cases, we improve upon the best known
results in the literature.

These specific improvements along with the general methodology developed in the
paper can find practical applications wherever the precise quantitative behavior of metric
entropy, as opposed to its asymptotic scaling behavior only, is relevant. Examples include
determining the minimum required sampling rate in A/D conversion [19] or the minimum
size of deep neural networks needed to learn given function classes [10].

2 A Simple Example

The purpose of this section is to present a simple example which elucidates the main ideas
the paper is built on. We start with the formal definition of metric entropy.

Definition 1 (Metric entropy). Let (X , d) be a metric space and K ⊆ X a compact set.
An ε-covering of K with respect to the metric d is a set {x1, ... , xN} ⊆ X such that for
each x ∈ K, there exists an i ∈ {1, . . . , N} so that d(x, xi) ≤ ε. The ε-covering number
N(ε;K, d) is the cardinality of a smallest such ε-covering. The metric entropy of K is

H(ε;K, d) := log2N(ε;K, d).

The example we consider is the most basic of examples, namely the computation of the
metric entropy of the unit interval [0, 1] equipped with the metric induced by the absolute
value |·|. Although this example has been studied exhaustively in the literature, the van-
tage point we take, namely in terms of binary expansions, seems novel. Before developing
our idea, we briefly recall the main arguments usually employed to establish the result,
following the exposition in [6]. Specifically, one wishes to prove that

N(ε; [0, 1], |·|) =

⌈
1

2ε

⌉
. (1)

This is typically done by establishing

N(ε; [0, 1], |·|) ≤
⌈

1

2ε

⌉
and N(ε; [0, 1], |·|) ≥

⌈
1

2ε

⌉
, (2)

which, when combined, yield the desired result. The upper bound in (2) is obtained by
constructing an explicit ε-covering of [0, 1], specifically {xi}Ni=1 with xi := 2 (i−1/2) ε, for
i = 1, . . . , N , and N = d1/(2ε)e. It follows by inspection that, for every x ∈ [0, 1], there
exists an i such that |x− xi| ≤ ε. Fig. 1 depicts an example.

0 1
x1 = 1/8 x2 = 3/8 x3 = 5/8 x4 = 7/8

2ε
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Figure 1: Covering of the unit interval for ε = 1/8 and N = 4. The
interval [0, 1] is divided into four subintervals of length 2ε centered at
x1, x2, x3, and x4, one of which is indicated in blue.

The lower bound in (2) is found through a volume argument as follows. If the interval
[0, 1] can be covered with N(ε; [0, 1], |·|) intervals of size 2ε, we must have

2εN(ε; [0, 1], |·|) ≥ 1.

Since N(ε; [0, 1], |·|) is an integer, this can be refined to

N(ε; [0, 1], |·|) ≥
⌈

1

2ε

⌉
,

which is the desired lower bound, thereby finalizing the proof of (1). As a byproduct, it
has also been established that the ε-covering {x1, . . . , xN} constructed above is optimal,
in the sense that there is no ε-covering with fewer elements; and we have identified a
natural mapping that takes every x ∈ [0, 1] to its nearest xi.

We now view the derivation of (1) just presented through the prism of binary expan-
sions of real numbers. A binary expansion of x ∈ [0, 1] is a sequence {bn}n∈N∗ ∈ {0, 1}N

∗

of digits, indexed by the positive integers N∗, satisfying

x =
∑
n∈N∗

bn2−n. (3)

Note that binary expansions are unique up to the trivial 2-ambiguity that identifies, e.g.,
x = 1/2 with the sequence b = 10000... and the alternative b̃ = 01111.... For simplicity
of exposition, we assume that ε is an inverse power of 2, i.e., ε = 2−k−1, for some k ∈ N,
and hence log(1/(2ε)) = k. For this choice, the ε-covering constructed above divides the
interval [0, 1] into the N = 2k sub-intervals Ii := [(i− 1)2−k, i2−k], i = 1, . . . , N , with the
interesting property that, for given i, the binary expansions of the points in Ii coincide in
their first k digits1. Put differently, one can view the construction of the optimal covering
above, together with its corresponding natural mapping, as follows: Given a number
x ∈ [0, 1], (i) write its binary expansion, (ii) discard all the digits after the k-th one, and
(iii) append a 1 to the remaining digits to obtain the covering element x is mapped to.
This three-step procedure can be illustrated for k = 2 (also see Fig. 2) as follows:

x
(i)−→ 0. b1 b2︸︷︷︸

first k digits

b3 b4 b5 b6 . . .
(ii)−−→ 0. b1 b2

(iii)−−→ xi :=2 0. b1 b2 1.

We can now formally view (3) as an expansion of the objects in the set under consideration
into a series that exhibits exponential decay, according to 2−n here. The corresponding
expansion coefficients, the digits bn, can take on values from the set {0, 1}. Both the
construction of the covering ball centers xi and the mapping of the elements in [0, 1] to
the closest covering ball center are effected by thresholding the series expansion after
k = log(1/(2ε)) terms. Equivalently, this means that the approximation error decays
exponentially in the number of terms k retained.

1The interval boundary i2−k is identified with the alternative binary expansion b̃.
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0 1

I1 I2 I3 I4

x =2 0.10001 . . .

x1 = 1/8

=2 0.001

x2 = 3/8

=2 0.011

x3 = 5/8

=2 0.101

x4 = 7/8

=2 0.111

Figure 2: Covering of the unit interval, for k = 2.

The present paper builds on a vast generalization of this viewpoint. More precisely,
given a class of functions, we follow an analogous three-step procedure by first identifying
an expansion of the elements x in the class in terms of an exponentially decaying coefficient
sequence {xn}n∈N∗ . This exponential decay property is formally expressed through a
condition of the form (∑

n∈N∗
|xn/µn|p

)1/p

≤ 1, (4)

where p ∈ [1,∞) and {µn}n∈N∗ is an exponentially decaying sequence. For p =∞, we use

sup
n∈N∗
|xn/µn| ≤ 1. (5)

Conditions of the form (4) or (5) define infinite-dimensional ellipsoids with semi-axes
{µn}n∈N∗ . In the binary expansion case considered above, we would have (5) with xn =
bn2−n, µn = 2−n, for n ∈ N∗, thanks to bn ∈ {0, 1}. In the second step, we reduce the
problem to the analysis of finite-dimensional ellipsoids by truncating the expansion. The
choice of the number of terms to be retained is informed by the exponential decay of
the ellipsoid semi-axes and should depend logarithmically on 1/ε; this will, in turn, yield
an approximation error on the order of ε. In the third step, the metric entropy of the
finite-dimensional ellipsoid obtained through truncation is derived, specifically through
volume arguments. This would not be possible in the infinite-dimensional case where
volumes are infinite. In summary, we are hence spared from the often tedious task of
explicitly constructing coverings and packings as done in traditional approaches (see e.g.
[16, Chapter 7] or [2, Chapter 10]). In fact, when the coefficients xn are real- or complex-
valued, as will be the case in general, it is actually unclear how to infer explicit coverings or
packings within our approach. In the binary expansion example considered above this was
made possible by the finite-alphabet property of the xn = bn2−n. In summary, while we
have a very general methodology which allows to improve upon best-known metric entropy
results, our approach is not constructive in the sense of identifying optimal coverings and
packings.

We conclude this section by defining notation and terminology. N and N∗ stand for the
set of natural numbers including and, respectively, excluding zero, Z is the set of integers.
R and C denote the fields of real and, respectively, complex numbers. We use the generic
notation K to mean that a statement applies both for K = R and K = C. It will further
be convenient to introduce the notation

σK(d) :=

{
d, if K = R,
2d, if K = C.

(6)

For d ∈ N∗, we denote the geometric mean of the set {µ1, . . . , µd} of positive real numbers
by

µ̄d :=
d∏

n=1

µ1/d
n .
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We refer to the closed ball with center x, of radius r, and with respect to the metric ρ by
Bρ(x;r). The subscript ρ will be omitted when there is no room for confusion. When the
metric ρ is induced by the usual p-norm, we simply write Bp for the unit ball Bρ(0 ; 1).
log(·) stands for the logarithm to base 2 and ln(·) is the natural logarithm. For k ∈ N∗,
we denote the k-fold iterated logarithm by

log(k)(·) := log ◦ · · · ◦ log︸ ︷︷ ︸
k times

(·).

Finally, when comparing the asymptotic behavior of the functions f and g as x→ `, with
` ∈ R ∪ {−∞,∞}, we use the notation

f = ox→`(g) ⇐⇒ lim
x→`

f(x)

g(x)
= 0 and f = Ox→`(g) ⇐⇒ lim

x→`

∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ C,
for some constant C > 0. We further indicate asymptotic equivalence according to

f ∼x→` g ⇐⇒ lim
x→`

f(x)

g(x)
= 1.

3 Metric Entropy of Ellipsoids

As mentioned earlier, we shall characterize the metric entropy of infinite-dimensional
ellipsoids by reduction to finite-dimensional ellipsoids while controlling the resulting ap-
proximation error. We begin by formally introducing finite-dimensional ellipsoids.

Definition 2 (Finite-dimensional ellipsoids). Let d ∈ N∗ and p ∈ [1,∞]. To a given set
{µ1, . . . , µd} of strictly positive real numbers, we associate the p-ellipsoid norm ‖ · ‖p,µ on
Kd, defined as

‖ · ‖p,µ : x ∈ Kd 7→


(∑d

n=1|xn/µn|
p
)1/p

, if 1 ≤ p <∞,
max1≤n≤d |xn/µn|, if p =∞.

The finite-dimensional p-ellipsoid is the unit ball in Kd with respect to the norm ‖ · ‖p,µ
and is denoted by

Edp
(
{µn}dn=1

)
:=
{
x ∈ Kd | ‖x‖p,µ ≤ 1

}
.

The numbers {µ1, . . . , µd} are referred to as the semi-axes of the ellipsoid Edp ({µn}dn=1).

We simply write Edp when the choice of semi-axes is clear from the context. For simplicity
of exposition, and without loss of generality, we assume that the semi-axes {µ1, . . . , µd}
are arranged in non-increasing order, i.e.,

µ1 ≥ · · · ≥ µd > 0.

As already mentioned, our approach is based on volume arguments. Specifically, we
shall exploit the fact that the total volume occupied by the covering balls of a given set is
larger than or equal to the volume of the set. Conversely, when packing balls into a set,
the total volume occupied by these balls must be less than or equal to the volume of a
slightly augmented version of the set. This intuition is formalized in [6, Lemma 5.7] for
x ∈ Rd (the case x ∈ Cd can be handled similarly by identifying C with R2), which we
restate here for completeness.
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Lemma 3 (Volume estimates). Let d ∈ N∗ and fix ε > 0. Consider the norms ‖ · ‖ and
‖ · ‖′ on Kd and let B and B′ be their respective unit balls. Then, the ε-covering number
N(ε;B, ‖ · ‖′) satisfies

volK(B)

volK(B′)
≤ N

(
ε;B, ‖ · ‖′

)
εσK(d) ≤ 2σK(d) volK

(
B + ε

2B
′)

volK(B′)
. (7)

Volume ratios akin to those in (7) will appear regularly in our analyses, in particular
with ‖ · ‖ and ‖ · ‖′ given by p− and q−norms, for some p, q ∈ [1,∞]. It will hence turn
out convenient to introduce the notation

V K,d
p,q :=

volK(Bp)
volK(Bq)

. (8)

Such volume ratios have been studied extensively in the literature, see e.g. [20] and [21,
Chapter 3] for representative references in the context of metric entropy.

Now, observe that, by taking logarithms in (7), one can readily deduce the metric
entropy scaling behavior of a d-dimensional unit ball B according to

H
(
ε;B, ‖ · ‖′

)
∼ε→0 σK(d) log

(
ε−1
)
. (9)

Intuitively, this scaling quantifies that, in order to encode an element of B with precision
ε, one needs to quantize each of its components using log(ε−1) bits.

Recalling that finite-dimensional p-ellipsoids are unit balls with respect to ‖ · ‖p,µ-
norms, it follows that their metric entropy behavior is, in principle, characterized by (9).
However, bringing out the dependency on the semi-axes {µ1, . . . , µd} and getting good
constants in lower and upper bounds on metric entropy, ideally even sharp results, requires
significantly more work. The following two theorems, whose proofs have been relegated
to Appendix C.1, address these issues and constitute our main results in this context.

Theorem 4. Let d ∈ N∗ and p, q ∈ [1,∞]. Then, there exists a positive real constant
κ independent of d such that, for all ε > 0, the covering number of the ellipsoid Edp in
‖ · ‖q-norm satisfies

N
(
ε;Edp , ‖ · ‖q

) 1
σK(d)

ε ≥ κσK(d)
( 1
q
− 1
p

)
µ̄d,

where µ̄d is the geometric mean of the semi-axes of Edp .

Theorem 5. Let d ∈ N∗, let p, q ∈ [1,∞], and assume that

H
(
ε;Edp , ‖ · ‖q

)
≥ 2σK(d), for all ε ∈ [0, 2µd], (10)

where µd is the smallest semi-axis of Edp . Then, there exists a positive real constant κ

independent of d such that, for all ε ∈ [0, 2µd], the covering number of the ellipsoid Edp in
‖ · ‖q-norm satisfies

N
(
ε;Edp , ‖ · ‖q

) 1
σK(d)

ε ≤ κσK(d)
( 1
q
− 1
p

)
µ̄d,

where µ̄d is the geometric mean of the semi-axes of Edp .
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Obviously, we must have
κ ≥ κ. (11)

Note that the upper bound in Theorem 5 requires the additional assumption ε ∈
[0, 2µd]. This can be explained as follows. If ε is large compared to µd (recall that the
semi-axes are ordered), the problem of covering the d-dimensional ellipsoid can be reduced
to that of covering a lower-dimensional version thereof. This insight is illustrated, for
d = 2, in Figure 3.

Figure 3: Reduction of a two-dimensional covering problem to one di-
mension by lining up ε-balls, with ε > 2µ2, along the x-axis.

Equipped with Theorems 4 and 5, we are ready to study infinite-dimensional ellipsoids.

Definition 6 (Infinite-dimensional ellipsoids). Let p ∈ [1,∞]. To a given bounded se-
quence {µn}n∈N∗ of positive real numbers, we associate the ellipsoid norm ‖ · ‖p,µ on
`p(N∗ ;K), defined as

‖ · ‖p,µ : x ∈ `p(N∗ ;K) 7→

{(∑
n∈N∗ |xn/µn|

p)1/p, if 1 ≤ p <∞,
supn∈N∗ |xn/µn|, if p =∞.

The infinite-dimensional p-ellipsoid is the unit ball in `p(N∗ ;K) with respect to the norm
‖ · ‖p,µ and is denoted by

Ep({µn}n∈N∗) := {x ∈ `p(N∗ ;K) | ‖x‖p,µ ≤ 1}.

The elements of {µn}n∈N∗ are referred to as the semi-axes of the ellipsoid Ep({µn}n∈N∗).
We simply write Ep when the choice of the semi-axes is clear from the context. For
simplicity of exposition, and without loss of generality, we assume that the semi-axes
{µn}n∈N∗ are arranged in non-increasing order, i.e.,

µ1 ≥ · · · ≥ µd ≥ · · · > 0.

Note that x ∈ `p(N∗ ;K) does not necessarily imply ‖x‖p,µ <∞. However, the converse is
true, namely every x with finite ellipsoid norm ‖x‖p,µ must be in `p(N∗ ;K). Consequently,
defining the ellipsoid Ep({µn}n∈N∗) as a subset of `p(N∗ ;K) is without loss of generality.

Restraining the semi-axes to be positive does not come at a loss of generality as the
dimensions corresponding to semi-axes that are equal to zero can simply be removed from
consideration. In particular, when the semi-axes equal zero beyond a certain index, we
are back to the case of finite-dimensional ellipsoids. As announced in the introduction, we
restrict ourselves to ellipsoids with semi-axes of exponential decay formalized as follows.
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Definition 7 (Exponentially decaying semi-axes). We say that a smooth (i.e., infinitely
differentiable) function

ψ : (0,∞)→ R

is a decay rate function with parameter t∗ ≥ 0 if

ψ((t∗,∞)) = (0,∞) and t 7→ ψ(t)

t
is non-decreasing on (t∗,∞). (12)

Further, the ellipsoid Ep({µn}n∈N∗) has ψ-exponentially decaying semi-axes if

µn := c0 exp{− ln(2)ψ(n)}, for all n ∈ N∗ and some c0 > 0. (13)

Concrete examples of decay rate functions ψ will be considered in Corollaries 12-14. We
note that every decay rate function ψ must be invertible on (t∗,∞); see Lemma 31 in
Appendix B for a formal statement and proof of this fact. The inverse

ψ(−1) : (0,∞)→ (t∗,∞)

of ψ plays a central role in our main result Theorem 9. Before stating this result, we need
to introduce two auxiliary functions.

Definition 8 (ψ-average and ψ-difference functions). Let ψ be a decay rate function. We
define the ψ-average function according to

δ(d) :=
1

d

d∑
n=1

(ψ(d)− ψ(n)), for all d ≥ 1,

and the ψ-difference function as

ζ(d) := ψ(d)− ψ(d− 1), for all d ≥ 2.

The main properties of the ψ-average and the ψ-difference function are summarized in
Appendix B.

The next theorem constitutes the main result of the paper and characterizes the asymp-
totic behavior of the metric entropy of infinite-dimensional ellipsoids with ψ-exponentially
decaying semi-axes.

Theorem 9 (Metric entropy of infinite-dimensional ellipsoids). Let p, q ∈ [1,∞] and let ψ
be a decay rate function. There exists an integer-valued function dε which can be written
in the form

dε = ψ(−1)
[
log
(
ε−1
)

+ log(c0)
]

+Oε→0(1), (14)

with c0 as per (13), such that the metric entropy of the infinite-dimensional ellipsoid Ep
with ψ-exponentially decaying semi-axes {µn}n∈N∗ satisfies

H(ε;Ep, ‖ · ‖q) = σK(dε)

{
δ(dε) +

(
1

q
− 1

p

)
log(σK(dε)) +Odε→∞(ζ(dε))

}
, (15)

where δ(·) and ζ(·) are the ψ-average and the ψ-difference function, respectively.
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We note that the metric entropy of ellipsoids with exponentially decaying semi-axes does
not seem to have been characterized before in the literature. The proof of Theorem 9
follows steps two and three of the three-step procedure described in the introduction.
Concretely, given an infinite-dimensional ellipsoid Ep({µn}n∈N∗) to be covered by balls of
radius ε > 0, the problem is reduced to covering a finite-dimensional ellipsoid of dimension
dε. One then applies Theorems 4 and 5 to this dε-dimensional ellipsoid to obtain (15).
The choice of dε is informed by the idea that semi-axes with indices beyond dε should
asymptotically be on the order of ε, i.e.,

µdε ∼ε→0 ε,

or, equivalently using µdε = c0 exp{− ln(2)ψ(dε)}, we want

dε ∼ε→0 ψ
(−1)

[
log
(
ε−1
)

+ log(c0)
]
,

which is (14).

Proof. We first introduce, for all ε > 0, the effective dimension of the ellipsoid Ep with
respect to ‖ · ‖q as

dε := min
{
k ∈ N∗ | N(ε;Ep, ‖ · ‖q)

1
σK(k) µk ≤ κσK(k)

( 1
q
− 1
p

)
µ̄k

}
, (16)

where κ is the constant in the statement of Theorem 5. It is formally established in
Lemma 47 (see Appendix C.6.18) that the effective dimension is well-defined for all ε > 0
and approaches infinity as ε→ 0. Taking the logarithm in (16) yields

σK(dε − 1)

{
log(κ) +

(
1

q
− 1

p

)
log(σK(dε − 1)) (17)

+
1

dε − 1

dε−1∑
n=1

log

{
µn
µdε−1

}}
< H(ε;Ep, ‖ · ‖q)

≤ σK(dε)

{
log(κ) +

(
1

q
− 1

p

)
log(σK(dε)) +

1

dε

dε∑
n=1

log

{
µn
µdε

}}
. (18)

Using

δ(d) =
1

d

d∑
n=1

(ψ(d)− ψ(n))
(13)
=

1

d

d∑
n=1

log

{
µn
µd

}
,

and identifying the term log(κ) as Odε→∞(1), we can rewrite the upper bound in (17)-(18)
according to

H(ε;Ep, ‖ · ‖q) ≤ σK(dε)

{
δ(dε) +

(
1

q
− 1

p

)
log(σK(dε)) +Odε→∞(1)

}
. (19)

The lower bound in (17)-(18) can equivalently be expressed as

σK(dε − 1)

{
δ(dε − 1) +

(
1

q
− 1

p

)
log(σK(dε − 1)) +Odε→∞(1)

}
= σK(dε)

{
δ(dε) +

(
1

q
− 1

p

)
log(σK(dε))− ζ(dε) (1− 1/dε) +Odε→∞(1)

}
,

9



where we used

σK(dε − 1) log(σK(dε − 1)) = σK(dε)(log(σK(dε)) +Odε→∞(1))

together with the identity

σK(d) δ(d)− σK(d− 1) δ(d− 1)

σK(d)
= ζ(d) (1− 1/d), for all d ≥ 2,

established in Lemma 32 (see Appendix B). With

1 = Od→∞(ζ(d)), and therefore d = Od→∞(d ζ(d)), (20)

which follows from Lemma 33 (see Appendix B), we can further rewrite the lower bound
in (17)-(18) according to

σK(dε)

{
δ(dε) +

(
1

q
− 1

p

)
log(σK(dε)) +Odε→∞(ζ(dε))

}
. (21)

Combining the upper bound (19) with the lower bound (21) and using once more (20),
we obtain the desired final result according to

H(ε;Ep, ‖ · ‖q) =σK(dε)

{
δ(dε) +

(
1

q
− 1

p

)
log(σK(dε)) +Odε→∞(ζ(dε))

}
.

It remains to establish that dε can, indeed, be expressed as in (14). This will be accom-
plished with the help of the following two lemmata.

Lemma 10. There exists a positive real constant c ≤ 1 independent of ε such that

ε ≥ cµdε , for all ε > 0,

where dε is as defined in (16).

Proof. See Appendix C.6.1.

Lemma 11. There exist a positive real number ε∗ and a constant c ≥ 1 such that, for all
ε ∈ (0, ε∗),

ε ≤ cµdε−1,

where dε is as defined in (16).

Proof. See Appendix C.6.2.

Let c, c, and ε∗ > 0 be as in Lemmata 10 and 11. Choose ε ∈ (0, ε∗) small enough for

log
(
ε−1
)

+ log(c0) + log(c) > 0 and dε − 1 > t∗ (22)

to hold. It further follows from Lemmata 10 and 11 that

log(µdε) + log(c) ≤ log(ε) ≤ log(µdε−1) + log(c). (23)

On the other hand we have from (13)

log(µd) = −ψ(d) + log(c0), for all d ∈ N∗. (24)

10



Combining (23) and (24) yields

ψ(dε − 1)− log(c) ≤ log
(
ε−1
)

+ log(c0) ≤ ψ(dε)− log(c),

or, equivalently, dε ≥ ψ
(−1)

[
log
(
ε−1
)

+ log(c0) + log(c)
]
, and

dε ≤ ψ(−1)
[
log
(
ε−1
)

+ log(c0) + log(c)
]

+ 1,
(25)

where we used that the second part of (22) together with Lemma 31 ensures that ψ
can, indeed, be inverted, and the first part of (22) guarantees that both bounds are well
defined. Using the subadditivity of ψ(−1) (cf. Lemma 34 in Appendix B) and recalling
that c ≤ 1 ≤ c, we get from (25)dε ≥ ψ

(−1)
[
log
(
ε−1
)

+ log(c0)
]
− ψ(−1)[− log(c)], and

dε ≤ ψ(−1)
[
log
(
ε−1
)

+ log(c0)
]

+ ψ(−1)[log(c)] + 1,

which, in turn, allows us to finish the proof by concluding that

dε = ψ(−1)
[
log
(
ε−1
)

+ log(c0)
]

+Oε→0(1).

For later reference, we next collect consequences of Theorem 9 for specific decay rate
functions ψ. The first one, Corollary 12, treats the case of linear functions ψ; while
Corollaries 13 and 14 pertain to ψ-functions growing super-linearly.

When ψ is a linear function, the analogy with binary expansions, studied in Section
2, suggests that the effective dimension dε grows logarithmically in ε−1. Combining this
observation with (9), we expect the leading term of the metric entropy expression to scale
according to log2

(
ε−1
)
. The next corollary formalizes this insight.

Corollary 12. Let p, q ∈ [1,∞], c > 0, and

ψ : t ∈ (0,∞) 7→ c t ∈ R.

The metric entropy of the infinite-dimensional ellipsoid Ep with ψ-exponentially decaying
semi-axes satisfies

H(ε;Ep, ‖ · ‖q) =
α

2c
log2

(
ε−1
)

+
α

c

(
1

q
− 1

p

)
log
(
ε−1
)

log(2)
(
ε−1
)

+Oε→0

(
log
(
ε−1
))
,

where α = 1 if K = R and α = 2 if K = C.

Proof. See Appendix C.2.

We now turn to decay rate functions of super-linear growth, whose corresponding metric
entropy asymptotics will be expressed in terms of the Lambert W -function, the main
properties of which are recalled in Appendix A.

11



Corollary 13. Let p, q ∈ [1,∞], c, c′ > 0, and

ψ : t ∈ [1,∞) 7→ c t (log(t)− c′) ∈ R.

The metric entropy of the infinite-dimensional ellipsoid Ep with ψ-exponentially decaying
semi-axes satisfies

H(ε;Ep, ‖ · ‖q) =
α c 22c′−1

ln(2)
exp{2β(ε)}

(
β(ε) +

1

2

)(
1 +Oβ(ε)→∞(exp{−β(ε)})

)
,

where α = 1 if K = R, α = 2 if K = C, and

β(ε) := W

(
ln
(
ε−1
)

2c′c

)
,

with W (·) denoting the Lambert W -function.

Proof. See Appendix C.3.

The next result exploits properties of the Lambert W -function to find the explicit asymp-
totic behavior of the metric entropy in Corollary 13 up to second order. We remark
that inspection of the proof reveals that it is actually possible to obtain the asymptotic
behavior up to arbitrary order. Concretely, this can be done by continuing the asymp-
totic expansion of ψ(−1) in Lemma 45 using more terms from Lemma 29. For clarity
of exposition, however, we decided to limit the formal statement of the result to second
order.

Corollary 14. Let p, q ∈ [1,∞], c, c′ > 0, and

ψ : t ∈ [1,∞) 7→ c t (log(t)− c′) ∈ R.

The metric entropy of the infinite-dimensional ellipsoid Ep with ψ-exponentially decaying
semi-axes satisfies

H(ε;Ep, ‖ · ‖q) =
α log2

(
ε−1
)

2 c log(2)(ε−1)

(
1 +

log(3)
(
ε−1
)

log(2)(ε−1)
+ oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

))
.

Proof. See Appendix C.3.

We conclude by pointing out that, both in Corollary 13 and Corollary 14, the asymptotic
behavior of metric entropy does not depend on the parameters p and q.

4 Applications to Complex Analytic Functions

We now turn to the application of our general results to classes of analytic functions whose
asymptotic metric entropy behavior has been characterized before in the literature. In
each of these cases, we improve upon the best known results, in some cases significantly
so. All of these best known results are based on evaluating the cardinalities of explicitly
constructed coverings and packings. The corresponding proofs are hence often tedious
and highly specific to the function class under consideration.
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4.1 Periodic Functions Analytic on a Strip

We first consider a class of functions that are periodic on the real line and can be analyt-
ically continued to a strip in the complex plane. The formal definition is as follows.

Definition 15 (Periodic functions analytic on a strip). Let M and s be positive real
numbers. We denote by As(M) the class of functions f : R → C which are 2π-periodic
and can be analytically continued to the domain

S := {z = x+ iy ∈ C | x ∈ R and |y| < s},

such that
sup
z∈S
|f(z)| ≤M.

Note that, by the identity theorem (see e.g. [22, Corollary 10.18]), f(z) in Definition 15
is 2π-periodic on the entire strip S, i.e., f(z + 2π) = f(z), z ∈ S.

The metric entropy of the class As(M) endowed with the metric

d2π : (f1, f2) 7−→ sup
x∈[0,2π]

|f1(x)− f2(x)|

was characterized in [16, Chapter 7, Section 2.4] according to

H(ε;As(M), d2π) =
2 ln(2)

s
log2

(
ε−1
)

+Oε→0

(
log
(
ε−1
)

log(2)
(
ε−1
))
. (26)

The standard technique for deriving this result is to construct covering and packing ele-
ments via an adequate choice of Fourier series coefficients. We next demonstrate that our
general approach improves upon (26) by providing a more precise characterization of the
Oε→0(·) term.

Theorem 16. Let M and s be positive real numbers. The metric entropy of the class
As(M) equipped with the metric d2π can be expressed as

H(ε;As(M), d2π) =
2 ln(2)

s

[
log2

(
ε−1
)

+ log
(
ε−1
)

log(2)
(
ε−1
)
(γ(ε) + oε→0(1))

]
,

with γ(·) a function satisfying |γ(ε)| ≤ 1, for all ε > 0.

Theorem 16 improves upon (26) as follows. While (26) states that there exists K > 0,
possibly depending on s and M , such that

lim
ε→0

∣∣∣∣∣
s

2 ln(2)H(ε;As(M), d2π)− log2
(
ε−1
)

log(ε−1) log(2)(ε−1)

∣∣∣∣∣ ≤ K,
Theorem 16 establishes that the constant K can be taken to be equal to 1, independently
of s and M .

Proof. The elements of As(M) are 2π-periodic functions and can hence be represented in
terms of Fourier series according to

f(x) =

∞∑
k=−∞

ake
ikx, with ak :=

1

2π

∫ 2π

0
f(x) e−ikx dx, for all k ∈ Z.
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We shall use the shorthand a := {ak}k∈Z. Following our three-step procedure, we first
establish that the body formed by the Fourier series coefficients is of ellipsoidal structure,
more specifically it can be inscribed and circumscribed with ellipsoids. There is a minor
technical adjustment we need to make before we can proceed. Specifically, so far we
only considered one-sided ellipsoids, that is, ellipsoids indexed by N∗ rather than Z. The
Fourier series coefficients {ak}k∈Z are, however, two-sided sequences. To consolidate this
matter, we define the coefficients

ã1 := a0, ã2n := an, and ã2n+1 := a−n, for all n ∈ N∗, (27)

together with the map
ι : f ∈ As(M) 7→ {ãn}n∈N∗ .

The ellipsoidal structure of the body formed by the Fourier series coefficients is formalized
in the following lemma.

Lemma 17 (Ellipsoidal structure of ι(As(M))). Let M and s be positive real numbers
and set

µ(1)
n := Me−

sn
2 and µ(2)

n :=
√

2Me−
s(n−1)

2 , for all n ∈ N∗. (28)

Then, we have

E1

({
µ(1)
n

}
n∈N∗

)
⊆ ι(As(M)) ⊆ E2

({
µ(2)
n

}
n∈N∗

)
.

Proof. See Appendix C.6.3.

We next relate the metric d2π to `q-metrics in sequence spaces.

Lemma 18. Let f1 and f2 be 2π-periodic functions with Fourier series coefficients a(1)

and a(2), respectively, such that

f1(x) =
∞∑

k=−∞
a

(1)
k eikx and f2(x) =

∞∑
k=−∞

a
(2)
k eikx.

Then, we have ∥∥∥a(1) − a(2)
∥∥∥
`2(Z)

≤ d2π(f1, f2) ≤
∥∥∥a(1) − a(2)

∥∥∥
`1(Z)

.

Proof. See Appendix C.4.1.

Combining Lemma 17 with Lemma 18, we obtain

H
(
ε;E1

({
µ(1)
n

}
n∈N∗

)
, ‖ · ‖2

)
≤ H(ε;As(M), d2π) (29)

≤ H
(
ε;E2

({
µ(2)
n

}
n∈N∗

)
, ‖ · ‖1

)
, (30)

where {µ(1)
n }n∈N∗ and {µ(2)

n }n∈N∗ are according to (28). We now wish to apply Corollary
12 as a proxy for the second and third steps of our procedure. To this end, first observe
that, with ψ(t) = s

2 ln(2) t, we have

µ(1)
n = M exp{− ln(2)ψ(n)} and µ(2)

n =
√

2Mes/2 exp{− ln(2)ψ(n)},
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for all n ∈ N∗. This shows that the semi-axes {µ(1)
n }n∈N∗ and {µ(2)

n }n∈N∗ are ψ-exponentially
decaying. We are now in a position to apply Corollary 12 with c = s

2 ln(2) and α = 2 to
get

H
(
ε;E2

({
µ(2)
n

}
n∈N∗

)
, ‖ · ‖1

)
(31)

=
2 ln(2)

s
log2

(
ε−1
)

+
2 ln(2)

s
log
(
ε−1
)

log(2)
(
ε−1
)
(1 + oε→0(1)) (32)

and

H
(
ε;E1

({
µ(1)
n

}
n∈N∗

)
, ‖ · ‖2

)
(33)

=
2 ln(2)

s
log2

(
ε−1
)

+
2 ln(2)

s
log
(
ε−1
)

log(2)
(
ε−1
)
(−1 + oε→0(1)). (34)

Inserting (31)-(32) and (33)-(34) in (29)-(30) yields the desired result

H(ε;As(M), d2π) =
2 ln(2)

s

[
log2

(
ε−1
)

+ log
(
ε−1
)

log(2)
(
ε−1
)
(γ(ε) + oε→0(1))

]
,

with |γ(ε)| ≤ 1, for all ε > 0.

We conclude by noting that thresholding infinite-dimensional ellipsoids in the Fourier
series sequence space and covering through the resulting finite-dimensional ellipsoids im-
plicitly amounts to covering the class As(M) by finite Fourier series expansions, i.e., by
trigonometric polynomials.

4.2 Functions Bounded on a Disk

We next consider functions that are analytic and bounded on a disk, formally defined as
follows.

Definition 19 (Analytic functions bounded on a disk). Let M and r′ be positive real
numbers. We denote by A(r′ ;M) the class of functions f that are analytic on the open
disk D(0;r′) in the complex plane centered at 0 and of radius r′, and satisfy

sup
z∈D(0;r′)

|f(z)| ≤M.

Based on our three-step procedure, we now characterize the asymptotic behavior of the
metric entropy of the class A(r′ ;M) endowed with the metric

dr : (f1, f2) 7−→ sup
z∈D(0;r)

|f1(z)− f2(z)|, (35)

where we will assume throughout that 0 < r < r′.

The metric entropy of this function class is of relevance, inter alia, in control theory
and signal processing [23, 24] as well as in neural network theory [25], with the best-known
result due to Vituškin [2, Chapter 10, Theorem 4] given by

H
(
ε;A(r′ ;M), dr

)
=

log2
(
ε−1
)

log(r′/r)
+Oε→0

(
log
(
ε−1
)

log(2)
(
ε−1
))
. (36)

The standard technique for deriving this result is based on explicit constructions of cover-
ings and packings via adequate choices of Taylor series coefficients of functions inA(r′ ;M).
Again, we shall show that our general approach improves upon (36) by providing a more
precise characterization of the second-order term, and does so without resorting to the
explicit construction of coverings and packings.
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Theorem 20. Let r, r′, and M be positive real numbers such that r′ > r. The metric
entropy of the class A(r′ ;M) equipped with the metric dr can be expressed as

H
(
ε;A(r′ ;M), dr

)
=

log2
(
ε−1
)

log(r′/r)
+

log
(
ε−1
)

log(r′/r)
log(2)

(
ε−1
)
(γ(ε) + oε→0(1)),

with γ(·) a function satisfying |γ(ε)| ≤ 1, for all ε > 0.

Theorem 20 improves upon (36) as follows. While (36) states that there exists K > 0,
possibly depending on r, r′, and M , such that

lim
ε→0

∣∣∣∣∣ log(r′/r)H(ε;A(r′ ;M), dr)− log2
(
ε−1
)

log(ε−1) log(2)(ε−1)

∣∣∣∣∣ ≤ K,
Theorem 20 establishes that the constant K can be taken to be equal to 1, independently
of r, r′, and M .

Proof. Let {ak}k∈N be the sequence of Taylor series coefficients of f , which exists by
analyticity, i.e.,

f(z) =
∞∑
k=0

akz
k, for all z ∈ D(0;r′).

We start by defining the embedding

ι : f ∈ A(r′ ;M) 7→ {ãk}k∈N ∈ `∞(N), with ãk := akr
k, (37)

where {ãk}k∈N ∈ `∞(N) is a direct consequence of Cauchy’s estimate (47). As in the proof
of Theorem 16, we next inscribe and circumscribe ι(A(r′ ;M)) with ellipsoids.

Lemma 21 (Ellipsoidal structure of A(r′ ;M)). Let r, r′, and M be positive real numbers
such that r′ > r, and let

µk := M exp
{
−k ln(r′/r)

}
, for all k ∈ N. (38)

Then, we have
E1({µk}k∈N) ⊆ ι

(
A(r′ ;M)

)
⊆ E2({µk}k∈N).

Proof. See Appendix C.6.4.

We next relate the metric dr to `q-metrics in sequence spaces.

Lemma 22. Let r be a positive real number and let f1, f2 be functions that are analytic
on D(0;r), with respective Taylor series expansions

f1(z) =
∞∑
k=0

a
(1)
k zk and f2(z) =

∞∑
k=0

a
(2)
k zk.

Then, we have ∥∥∥ã(1) − ã(2)
∥∥∥
`2
≤ dr(f1, f2) ≤

∥∥∥ã(1) − ã(2)
∥∥∥
`1
, (39)

where
ã(1) :=

{
a

(1)
k rk

}
k∈N

and ã(2) :=
{
a

(2)
k rk

}
k∈N

.

Proof. See Appendix C.4.2.
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Combining Lemma 21 with Lemma 22, we obtain

H(ε;E1({µk}k∈N), ‖ · ‖2) ≤ H
(
ε;A(r′ ;M), dr

)
≤ H(ε;E2({µk}k∈N), ‖ · ‖1), (40)

where {µk}k∈N is as per (38). We can now apply Corollary 12 with c = log(r′/r) to obtain

H(ε;E2({µk}k∈N), ‖ · ‖1) =
log2

(
ε−1
)

log(r′/r)
(41)

+
2

log(r′/r)
log
(
ε−1
)

log(2)
(
ε−1
)(1

2
+ oε→0(1)

)
(42)

and

H(ε;E1({µk}k∈N), ‖ · ‖2) =
log2

(
ε−1
)

log(r′/r)
(43)

+
2

log(r′/r)
log
(
ε−1
)

log(2)
(
ε−1
)(
−1

2
+ oε→0(1)

)
. (44)

Inserting (41)-(42) and (43)-(44) in (40) yields the desired result

H
(
ε;A(r′ ;M), dr

)
=

log2
(
ε−1
)

log(r′/r)
+

log
(
ε−1
)

log(r′/r)
log(2)

(
ε−1
)
(γ(ε) + oε→0(1)),

with |γ(ε)| ≤ 1, for all ε > 0.

We conclude by noting that thresholding infinite-dimensional ellipsoids in the Taylor series
sequence space and covering through the resulting finite-dimensional ellipsoids implicitly
amounts to covering the class A(r′ ;M) by finite Taylor series expansions, i.e., by polyno-
mials, in a complex variable.

4.3 Functions of Exponential Type

We finally consider functions of exponential type [22, Chapter 19] defined as follows.

Definition 23 (Functions of exponential type). An entire function f is said to be of
exponential type if there exist positive real constants A and C such that, for all z ∈ C,

|f(z)| ≤ CeA|z|. (45)

We write FA,Cexp for the class of entire functions of exponential type with constants A and
C.

Functions of exponential type appear naturally in many practical applications, mainly as
they can be identified, through the Paley-Wiener theorem [22, Theorem 19.3], with band-
limited functions. For instance, in [19] the metric entropy (rate) of band-limited signals
plays a fundamental role in assessing the ultimate performance limits of analog-to-digital
converters.

The best known result on the metric entropy of FA,Cexp is [16, Chapter 7, Theorem XX]

H
(
ε;FA,Cexp , d1

)
∼ε→0

log2
(
ε−1
)

log(2)(ε−1)
, (46)

where d1 is the metric defined in (35) under the choice r = 1. We improve upon (46) as
follows.

17



Theorem 24. Let A and C be positive real constants. The metric entropy of the class
FA,Cexp (as per Definition 23) equipped with the metric d1 satisfies(

eA

2

)2 exp{2β1(ε)}
ln(2)

[
β1(ε) +

1

2

][
1 +Oβ1(ε)→∞(exp{−β1(ε)})

]
≤ H

(
ε;FA,Cexp , d1

)
≤ (eA)2 exp{2β2(ε)}

ln(2)

[
β2(ε) +

1

2

][
1 +Oβ2(ε)→∞(exp{−β2(ε)})

]
,

where

β1(ε) := W

(
2 ln
(
ε−1
)

eA

)
and β2(ε) := W

(
ln
(
ε−1
)

eA

)
,

with W denoting the Lambert W -function (cf. Appendix A).

Proof. See Appendix C.5.

It is not immediate that the characterization provided in Theorem 24 indeed constitutes
an improvement over (46). We therefore employ Theorem 24 to make the second order
term in the asymptotic expansion of the metric entropy of FA,Cexp explicit.

Corollary 25. Let A and C be positive real constants. The metric entropy of the class
FA,Cexp (as per Definition 23) equipped with the metric d1 satisfies

H
(
ε;FA,Cexp , d1

)
=

log2
(
ε−1
)

log(2)(ε−1)

(
1 +

log(3)
(
ε−1
)

log(2)(ε−1)
+ oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

))
.

Proof. See Appendix C.5.
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A Complements

This appendix collects known results that will be used frequently in the paper along with
auxiliary results.

Lemma 26 (Cauchy’s estimate). [22, Theorem 10.26] Let r and M be positive real num-
bers and let f be analytic on D(0;r) with Taylor series coefficients {ck}k∈N. If |f(z)| ≤M ,
for all z ∈ D(0;r), then

|ck| ≤
M

rk
, for all k ∈ N. (47)

We next recall results on the Lambert W -function.

Definition 27 (Lambert W -function). The Lambert W -function is defined as the unique
function satisfying

W (x) eW (x) = x, for all x ≥ 0.

Lemma 28. Let a and b be positive real numbers. Then, the equation

x = ae−x + b

has a unique solution, which is given by

x = b+W
(
ae−b

)
.
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Lemma 29. The Lambert W -function satisfies the relation

W (x) = ln(x)− ln(2)(x) +
∞∑
n=0

∞∑
m=1

(−1)ns(n+m,n+ 1)

m!

(
ln(2)(x)

)m
lnn+m(x)

,

for all x > 0, where s(n + m,n + 1) denotes the Stirling numbers of the first kind. In
particular, one has the asymptotic behavior

W (x) = ln(x)− ln(2)(x) +
ln(2)(x)

ln(x)
(1 + ox→∞(1)). (48)

We refer to [26] for further material on the Lambert W -function and to [27, Chapter 2.4]
for a proof of Lemma 29. Lemma 28 can be verified by direct substitution.

Finally, we shall need the following auxiliary result.

Lemma 30. It holds that

1 ≤ sup
k∈N∗

√
2πk e

1
12k

2k
<∞.

Proof. See Appendix C.6.5.

B Properties of Decay Rate Functions

Lemma 31. Let ψ be a decay rate function with parameter t∗. Then, ψ is strictly in-
creasing and invertible on (t∗,∞).

Proof. Fix t1, t2 ∈ (t∗,∞) such that t1 < t2. We then have

ψ(t2)− ψ(t1) = t2

[
ψ(t2)

t2
− ψ(t1)

t2

]
> t2

[
ψ(t2)

t2
− ψ(t1)

t1

]
≥ 0. (49)

The inequality (49) directly implies that ψ is strictly increasing on (t∗,∞). Combined
with the continuity of ψ on (t∗,∞), which follows by definition, this allows us to conclude
that ψ is invertible on (t∗,∞).

Lemma 32. Let ψ be a decay rate function. The ψ-average function δ and the ψ-difference
function ζ are related according to

σK(d) δ(d)− σK(d− 1) δ(d− 1)

σK(d)
= ζ(d) (1− 1/d), for all d ≥ 2.

Proof. We fix d ≥ 2 and note the following chain of identities

d δ(d)− (d− 1) δ(d− 1) =

d∑
n=1

(ψ(d)− ψ(n))−
d−1∑
n=1

(ψ(d− 1)− ψ(n))

= dψ(d)− (d− 1)ψ(d− 1) +
d−1∑
n=1

ψ(n)−
d∑

n=1

ψ(n)

= dψ(d)− (d− 1)ψ(d− 1)− ψ(d)

= (d− 1)(ψ(d)− ψ(d− 1))

= (d− 1) ζ(d) = d ζ(d) (1− 1/d).
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Rewriting this relation according to

σK(d) δ(d)− σK(d− 1) δ(d− 1)

σK(d)
= ζ(d) (1− 1/d)

finishes the proof.

Lemma 33. Let ψ be a decay rate function with parameter t∗. There exists a positive
real number κ such that the ψ-difference function ζ satisfies

ζ(d) ≥ κ, for all d > t∗ + 2.

Proof. We fix d > t∗ + 2 and start by rewriting ζ according to

ζ(d) =ψ(d)− ψ(d− 1) (50)

= d

(
ψ(d)

d
− ψ(d− 1)

d− 1

(
1− 1

d

))
= d

(
ψ(d)

d
− ψ(d− 1)

d− 1

)
+
ψ(d− 1)

d− 1
. (51)

As the function

t ∈ (t∗,∞) 7→ ψ(t)

t
∈ (0,∞)

is non-decreasing by definition, we have

ψ(d)

d
− ψ(d− 1)

d− 1
≥ 0 and

ψ(d− 1)

d− 1
≥ ψ(bt∗ + 1c)
bt∗ + 1c

.

Putting everything together, we obtain

ζ(d) = d

(
ψ(d)

d
− ψ(d− 1)

d− 1

)
+
ψ(d− 1)

d− 1
≥ ψ(bt∗ + 1c)
bt∗ + 1c

,

which establishes the desired result upon setting

κ :=
ψ(bt∗ + 1c)
bt∗ + 1c

.

Lemma 34 (Subadditivity of ψ(−1)). The inverse ψ(−1) of the decay rate function ψ is
subadditive, i.e., for all a, b > 0, we have

ψ(−1)(a+ b) ≤ ψ(−1)(a) + ψ(−1)(b).

Proof. We proceed in two steps, the first of which analyzes the variations of the function

u 7→ ψ(−1)(u)

u
.

To this end, we compute[
ψ(−1)(u)

u

]′
=

[[
ψ′
(
ψ(−1)(u)

)]−1

u
− ψ(−1)(u)

u2

]
(52)

=

[
ψ(−1)(u)

]2
u2 ψ′

(
ψ(−1)(u)

)[ u[
ψ(−1)(u)

]2 − ψ′
(
ψ(−1)(u)

)
ψ(−1)(u)

]
. (53)
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Changing variables according to
t = ψ(−1)(u),

(52)-(53) can be rewritten as[
ψ(−1)(u)

u

]′
=

t2

[ψ(t)]2 ψ′(t)

[
ψ(t)

t2
− ψ′(t)

t

]
(54)

= − t2

[ψ(t)]2 ψ′(t)

[
ψ(t)

t

]′
≤ 0, (55)

where the inequality holds for all t ∈ (t∗,∞) as a direct consequence of ψ being strictly
increasing (cf. Lemma 31) and satisfying the properties (12) in Definition 7. It hence
follows from (54)-(55) that

u 7→ ψ(−1)(u)

u
(56)

is non-increasing on (0,∞).
For the second step, fix a, b > 0 and observe that

a
ψ(−1)(a+ b)

a+ b
≤ ψ(−1)(a) and b

ψ(−1)(a+ b)

a+ b
≤ ψ(−1)(b). (57)

The desired result now follows by application of these two inequalities according to

ψ(−1)(a+ b) = a
ψ(−1)(a+ b)

a+ b
+ b

ψ(−1)(a+ b)

a+ b

(57)

≤ ψ(−1)(a) + ψ(−1)(b).

C Proofs

C.1 Proofs of Theorems 4 and 5

We start with preparatory material needed in both proofs. First, observe that Edp is the
image of Bp under the diagonal matrix

Aµ =


µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µd

. (58)

Indeed, we have

Edp =
{
x ∈ Kd | ‖x‖p,µ ≤ 1

}
=
{
x ∈ Kd | ‖z‖p ≤ 1, such that xn = µnzn, for all n ∈ {1, . . . , d}

}
=
{
Aµz | z ∈ Kd and ‖z‖p ≤ 1

}
= AµBp.

Next, note that

det(Aµ) = µ̄
σK(d)
d , (59)
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where we identified C with R2. It now follows as an immediate consequence of Edp = AµBp
that the volumes of the ellipsoid Edp and the ball Bp are related according to

volK(Edp ) = volK(Bp) det(Aµ)
(59)
= volK(Bp) µ̄σK(d)

d . (60)

We conclude with a lemma on volume ratios.

Lemma 35. Let d ∈ N∗ and p, q ∈ [1,∞]. The volume ratio V K,d
p,q satisfies

log

{(
V K,d
p,q

) 1
σK(d)

}
=

(
1

q
− 1

p

)
log(σK(d)) +Od→∞(1).

Proof. See Appendix C.6.6.

Proof of Theorem 4

The proof of Theorem 4 is effected by applying Lemma 3 with B = Edp , B′ = Bq, ‖ · ‖ =
‖ · ‖p,µ, and ‖ · ‖′ = ‖ · ‖q, according to

N
(
ε;Edp , ‖ · ‖q

)
εσK(d) ≥

volK(Edp )

volK(Bq)
(60)
= V K,d

p,q µ̄
σK(d)
d , (61)

and observing that Lemma 35 then implies the existence of a constant κ > 0 independent
of d such that (

V K,d
p,q

) 1
σK(d) ≥ κσK(d)

(
1
q
− 1
p

)
. (62)

Using (62) in (61) yields the desired result. We additionally note that, in the case p = q,
one can take κ = 1. This observation is exploited in [28, Theorem 5].

Proof of Theorem 5

We split the proof of Theorem 5 into the cases p ≥ q and p < q.
Case p ≥ q. With a view towards application of Lemma 3 with B = Edp and B′ = Bq,

we first consider the set
Edp +

ε

2
Bq

and note that owing to Bq ⊆ Bp and ε ≤ 2µd, it holds that

Edp +
ε

2
Bq ⊆ Edp +

ε

2
Bp ⊆ Edp + µdBp. (63)

Next, as the semi-axes µ1, . . . , µd are non-increasing, we obtain

Edp + µdBp ⊆ Edp + Edp = 2Edp , (64)

where the equality is thanks to the convexity of the ellipsoid Edp (recall that p ≥ 1 by
assumption). Combining (63) and (64) now yields

volK

(
Edp +

ε

2
Bq
)
≤ 2σK(d) volK

(
Edp
)
. (65)
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Applying the upper bound from Lemma 3, with B = Edp , B′ = Bq, ‖ · ‖ = ‖ · ‖p,µ, and
‖ · ‖′ = ‖ · ‖q, we get

N
(
ε;Edp , ‖ · ‖q

)
εσK(d) ≤ 2σK(d)

volK
(
Edp + ε

2Bq
)

volK(Bq)
(65)

≤ 4σK(d)
volK(Edp )

volK(Bq)
(60)
= 4σK(d) V K,d

p,q µ̄
σK(d)
d . (66)

From Lemma 35 we know that there exists a constant C > 0 that is independent of d and
such that (

V K,d
p,q

) 1
σK(d) ≤ C σK(d)

(
1
q
− 1
p

)
,

which, when used in (66), leads to

N
(
ε;Edp , ‖ · ‖q

) 1
σK(d)

ε ≤ 4C σK(d)

(
1
q
− 1
p

)
µ̄d. (67)

Setting κ := 4C yields the desired result.
Case p < q. The proof proceeds through arguments based on entropy numbers. We

first recall that, form ∈ N∗, them-th entropy number em(T ) of a linear operator T : (Kd, ‖·
‖)→ (Kd, ‖ · ‖′) is defined according to

em(T ) := inf
{
ε > 0 | H

(
ε;T (B), ‖ · ‖′

)
≤ m

}
,

where B denotes the unit ball in Kd w.r.t. the norm ‖ · ‖ (see [21, Definition 1.3.1]). We
are particularly interested in the mapping

Tp,q,µ := id: (Kd, ‖ · ‖p,µ)→ (Kd, ‖ · ‖q), (68)

that is, the identity operator between Kd equipped with the p-ellipsoid norm ‖ · ‖p,µ and
Kd equipped with the q-norm ‖ · ‖q. With this choice, we have

em(Tp,q,µ) := inf
{
ε > 0 | H

(
ε;Edp , ‖ · ‖q

)
≤ m

}
.

Additionally, we fix m according to

m :=
1

2
bH
(
ε;Edp , ‖ · ‖q

)
c,

so that trivially

ε ≤ e2m(Tp,q,µ) and N
(
ε;Edp , ‖ · ‖q

)
≤ 22m+1. (69)

Next, note that the operator Tp,q,µ can be factorized according to

Tp,q,µ = idp,q ◦Aµ,

where idp,q refers to the identity operator between Kd equipped with the p-norm ‖ ·‖p and
Kd equipped with the q-norm ‖·‖q, and Aµ was defined in (58). Using the multiplicativity
property of entropy numbers (see e.g. [29, Equation 15.7.2]), we get

e2m(idp,q ◦Aµ) ≤ em(idp,q) em(Aµ), (70)
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which allows us to reduce the problem of upper-bounding the entropy number e2m(Tp,q,µ)
to that of upper-bounding the entropy numbers em(idp,q) and em(Aµ). Under the as-
sumption (10) and using the fact that σK(d) is integer, one has m ≥ σK(d) and hence
the classical result [30, Theorem 1] on the entropy number of diagonal operators applies,
which can be reformulated in our setting according to

em(idp,q) ≤ C12
− m
σK(d)σK(d)

(
1
q
− 1
p

)
, (71)

where C1 is a positive numerical constant. Moreover, by setting p = q in (67), we get

em(Aµ) ≤ C22
− m
σK(d) µ̄d, (72)

where C2 is a positive numerical constant. Now combining (71) and (72) in (70) yields

e2m(Tp,q,µ) ≤ C02
− 2m
σK(d)σK(d)

(
1
q
− 1
p

)
µ̄d, (73)

with C0 a positive numerical constant. Finally, using (69) in combination with (73) results
in the desired bound according to

N
(
ε;Edp , ‖ · ‖q

) 1
σK(d)

ε
(69)

≤ 2
2m+1
σK(d) e2m(Tp,q,µ)

(73)

≤ 2
1

σK(d) C0 σK(d)

(
1
q
− 1
p

)
µ̄d ≤ κσK(d)

(
1
q
− 1
p

)
µ̄d,

where we set κ := 2C0 and used 2
1

σK(d) ≤ 2 in the last inequality. This concludes the
proof.

C.2 Proof of Corollary 12

First, note that ψ(t) = ct trivially satisfies the defining properties of decay rate functions
with the choice t∗ = 0 (cf. Definition 7). We can therefore apply Theorem 9 to get

H(ε;Ep, ‖ · ‖q) = σC(dε)

{
δ(dε) +

(
1

q
− 1

p

)
log(σC(dε)) +Odε→∞(ζ(dε))

}
, (74)

with dε satisfying

dε = ψ(−1)
[
log
(
ε−1
)

+ log(c0)
]

+Oε→0(1) =
log
(
ε−1
)

c
+Oε→0(1). (75)

With Definition 8, we obtain the ψ-average function according to

δ(d) =
1

d

d∑
n=1

(cd− cn) = c
d− 1

2
, for all d ∈ N∗, (76)

together with the ψ-difference function

ζ(d) = ψ(d)− ψ(d− 1) = c, for all d ≥ 2. (77)
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Finally, observe that σC(d) = αd, for all d ∈ N∗. Using (75), (76), and (77) in (74), the
desired result follows according to

H(ε;Ep, ‖ · ‖q) =αdε

{
c

2
dε +

(
1

q
− 1

p

)
log(dε) +Odε→∞(1)

}
=
α c

2
d2
ε + α

(
1

q
− 1

p

)
dε log(dε) +Odε→∞(dε)

=
α log2

(
ε−1
)

2 c

+
α

c

(
1

q
− 1

p

)
log
(
ε−1
)

log(2)
(
ε−1
)

+Oε→0

(
log
(
ε−1
))
.

C.3 Proofs of Corollaries 13 and 14

First, note that ψ(t) = ct(log(t) − c′) verifies the properties of decay rate functions with
the choice t∗ := 2c

′
. We can therefore apply Theorem 9 with K = C to get

H(ε;Ep, ‖ · ‖q) =αdε{δ(dε) +Oε→0(log(dε) + ζ(dε))}, (78)

where

dε = ψ(−1)
[
log
(
ε−1
)

+ log(c0)
]

+Oε→0(1) = ψ(−1)
[
log
(
ε−1
)]

+Oε→0(1). (79)

Here, we made use of the sublinearity of ψ(−1) to rid ourselves of the log(c0) term.
The following two lemmata are needed in the study of the asymptotic behavior of the

right-hand-side in (78).

Lemma 36 (Asymptotic behavior of the ψ-difference function). Let c, c′ > 0 and consider
the function ψ : t 7→ ct(log(t)− c′). The ψ-difference function ζ scales according to

ζ(d) = Od→∞(log(d)).

Proof. See Appendix C.6.7.

Lemma 37 (Asymptotic behavior of the ψ-average function). Let c, c′ > 0 and consider
the function ψ : t 7→ ct(log(t)− c′). The ψ-average function δ scales according to

δ(d) =
cd log(d)

2
+
c d (ln−1(2)− 2 c′)

4
+Od→∞(log(d)).

Proof. See Appendix C.6.8.

Using Lemma 36, we can now express (78) according to

H(ε;Ep, ‖ · ‖q) = αdε{δ(dε) +Oε→0(log(dε))}. (80)

Furthermore, direct application of Lemma 37 yields

δ(dε) =
c dε log(dε)

2
+
c dε (ln−1(2)− 2 c′)

4
+Oε→0(log(dε)),
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so that (80) becomes

H(ε;Ep, ‖ · ‖q) =
αcd2

ε log(dε)

2
+
αcd2

ε(ln
−1(2)− 2c′)

4
+Oε→0(dε log(dε)) (81)

=
α c

2
d2
ε

[
log(dε) +

ln−1(2)− 2 c′

2

][
1 +Oε→0

(
1

dε

)]
. (82)

Inserting (79) in (81)-(82), we get

H(ε;Ep, ‖ · ‖q) =
α c

2

(
ψ(−1)

[
log
(
ε−1
)]

+Oε→0(1)
)2

(83)

×
[
log
(
ψ(−1)

[
log
(
ε−1
)]

+Oε→0(1)
)

+
ln−1(2)− 2 c′

2

]
×
[
1 +Oε→0

(
1

ψ(−1)[log(ε−1)]

)]
=
α c

2

(
ψ(−1)

[
log
(
ε−1
)])2

×
[
log
(
ψ(−1)

[
log
(
ε−1
)])

+
ln−1(2)− 2 c′

2

]
×

[
1 +Oε→0

(
1

log
(
ψ(−1)[log(ε−1)]

))]. (84)

Next, we characterize the inverse of the decay rate function ψ(t) = ct(log(t)− c′).

Lemma 38. Let c, c′ > 0. The inverse of the function ψ : t 7→ ct(log(t)− c′) is given by

ψ(−1) : u 7−→ exp

{
c′ ln(2) +W

(
u ln(2)

c
e−c

′ ln(2)

)}
,

where W denotes the Lambert W -function.

Proof. See Appendix C.6.9.

Using Lemma 38 in (83)-(84), we obtain

H(ε;Ep, ‖ · ‖q) =
α c 22c′−1

ln(2)
exp

{
2W

(
ln
(
ε−1
)

2c′c

)}[
W

(
ln
(
ε−1
)

2c′c

)
+

1

2

]

×

[
1 +Oε→0

(
exp

{
−W

(
ln
(
ε−1
)

2c′c

)})]
,

which concludes the proof of Corollary 13.
For the proof of Corollary 14, we first need a characterization of the asymptotic be-

havior of ψ(−1).

Lemma 39. Let c, c′ > 0. The inverse function of ψ : t 7→ ct(log(t) − c′) satisfies the
relation

ψ(−1)(u)2 log
(
ψ(−1)(u)

)
=

u2

c2 log(u)

[
1 +

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]
.

Proof. See Appendix C.6.10.
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Now, starting from (83)-(84) and using Lemma 39 with u = log
(
ε−1
)

together with the
observation

Oε→0

(
1

log
(
ψ(−1)[log(ε−1)]

)) =Oε→0

(
1

log(2)(ε−1)

)

= oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

)
,

which employs Lemma 45, we obtain

H(ε;Ep, ‖ · ‖q) =
α log2

(
ε−1
)

2 c log(2)(ε−1)

[
1 +

log(3)
(
ε−1
)

log(2)(ε−1)
+ oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

)]
.

This concludes the proof of Corollary 14.

C.4 Proofs of Lemmata 18 and 22

C.4.1 Proof of Lemma 18

We first observe that, for all x ∈ R,

|f1(x)− f2(x)| =

∣∣∣∣∣
∞∑

k=−∞
a

(1)
k eikx −

∞∑
k=−∞

a
(2)
k eikx

∣∣∣∣∣
≤

∞∑
k=−∞

∣∣∣a(1)
k − a

(2)
k

∣∣∣ =
∥∥∥a(1) − a(2)

∥∥∥
`1(Z)

.

Upon taking the supremum over all x ∈ R, we hence get the desired upper bound

d2π(f1, f2) ≤
∥∥∥a(1) − a(2)

∥∥∥
`1(Z)

.

The sought lower bound is obtained through Parseval’s identity according to∥∥∥a(1) − a(2)
∥∥∥2

`2(Z)
=

∞∑
k=−∞

∣∣∣a(1)
k − a

(2)
k

∣∣∣2
=

1

2π

∫ 2π

0
|f1(x)− f2(x)|2 dx

≤ sup
x∈R
|f1(x)− f2(x)|2 = d2π(f1, f2)2.

This concludes the proof.

C.4.2 Proof of Lemma 22

We start by rewriting the metric dr according to

dr(f1, f2) = sup
z∈D(0;r)

|f1(z)− f2(z)|

= sup
z∈D(0;r)

∣∣∣f̃1

(z
r

)
− f̃2

(z
r

)∣∣∣
= sup

z∈D(0;1)

∣∣∣f̃1(z)− f̃2(z)
∣∣∣,
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where f̃1 and f̃2 are analytic functions defined on the unit disk D(0 ; 1) via their power
series expansions

f̃1(z) =
∞∑
k=0

ã
(1)
k zk and f̃2(z) =

∞∑
k=0

ã
(2)
k zk.

Applying [25, Theorem 3.1], we obtain

dr(f1, f2) = sup
‖x‖`2=1

∥∥∥(ã(1) − ã(2)
)
? x
∥∥∥
`2
, (85)

where ? denotes the convolution operator (for sequences). The desired upper bound now
follows directly from (85) by Young’s convolution inequality according to

dr(f1, f2) = sup
‖x‖`2=1

∥∥∥(ã(1) − ã(2)
)
? x
∥∥∥
`2

≤ sup
‖x‖`2=1

‖x‖`2
∥∥∥ã(1) − ã(2)

∥∥∥
`1

=
∥∥∥ã(1) − ã(2)

∥∥∥
`1
.

The sought lower bound follows from (85) by particularizing the choice of x to

x0 := (1, 0, 0, . . . ) ∈ `2,

so that

dr(f1, f2) = sup
‖x‖`2=1

∥∥∥(ã(1) − ã(2)
)
? x
∥∥∥
`2

≥
∥∥∥(ã(1) − ã(2)

)
? x0

∥∥∥
`2

=
∥∥∥ã(1) − ã(2)

∥∥∥
`2
.

This concludes the proof.

C.5 Proofs of Theorem 24 and Corollary 25

We start by developing material that is pertinent to both proofs. Let {ak}k∈N be the
sequence of Taylor series coefficients of

f(z) =
∞∑
k=0

akz
k, for all z ∈ C.

We start by defining the embedding

ι : f ∈ FA,Cexp 7→ {ak}k∈N ∈ `∞(N),

where {ak}k∈N ∈ `∞(N) follows from arguments similar to those employed in the proof of
Lemma 40. We wish to circumscribe and inscribe ι(FA,Cexp ) with ellipsoids.

Lemma 40. Let A and C be positive real constants. It holds that

ι
(
FA,Cexp

)
⊆ E∞({µk}k∈N),

where {
µ0 = C,

µk = C exp{−k(ln(k)− 1− ln(A))}, for k ≥ 1.
(86)
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Proof. See Appendix C.6.11.

Lemma 41. Let A and C be positive real constants and set

Ã :=
A

2
and C̃ := C

[
sup
k∈N∗

√
2πk e

1
12k

2k

]−1

. (87)

Then,
E∞({µ̃k}k∈N) ⊆ ι

(
FA,Cexp

)
,

where {
µ̃0 = C̃,

µ̃k = C̃ exp
{
−k
(

ln(k)− 1− ln(Ã)
)}
, for k ≥ 1.

(88)

Proof. See Appendix C.6.12.

Combining Lemmata 40 and 41 with Lemma 22, yields

H(ε;E∞({µ̃k}k∈N), ‖ · ‖2) ≤ H
(
ε;FA,Cexp , d1

)
(89)

≤ H(ε;E∞({µk}k∈N), ‖ · ‖1). (90)

We are now ready to proceed to the proof of Theorem 24.

C.5.1 Proof of Theorem 24

Observe that, from (88) and under the convention 0 log(0) = 0, we have

µ̃k = C̃ exp
{
−k
(

ln(k)− 1− ln(Ã)
)}

= C̃ exp{− ln(2)ψ(k)},

for all k ∈ N, with

ψ(k) = c k
(
log(k)− c′

)
, where c = 1 and c′ = log

(
eÃ
)
.

Application of Corollary 13 with c = 1 and c′ = log
(
eÃ
)

now yields

H(ε;E∞({µ̃k}k∈N), ‖ · ‖2) (91)

=
(
eÃ
)2 exp{2β1(ε)}

ln(2)

[
β1(ε) +

1

2

][
1 +Oβ1(ε)→∞(exp{−β1(ε)})

]
, (92)

where

β1(ε) := W

(
ln
(
ε−1
)

e Ã

)
.

Likewise, upon application of Corollary 13 with c = 1 and c′ = log(eA), we obtain

H(ε;E∞({µk}k∈N), ‖ · ‖1) (93)

= (eA)2 exp{2β2(ε)}
ln(2)

[
β2(ε) +

1

2

][
1 +Oβ2(ε)→∞(exp{−β2(ε)})

]
, (94)
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where

β2(ε) := W

(
ln
(
ε−1
)

eA

)
.

Using (91)-(92) and (93)-(94) in (89)-(90), yields(
eÃ
)2 exp{2β1(ε)}

ln(2)

[
β1(ε) +

1

2

][
1 +Oβ1(ε)→∞(exp{−β1(ε)})

]
≤ H

(
ε;FA,Cexp , d1

)
≤ (eA)2 exp{2β2(ε)}

ln(2)

[
β2(ε) +

1

2

][
1 +Oβ2(ε)→∞(exp{−β2(ε)})

]
,

thereby concluding the proof.

C.5.2 Proof of Corollary 25

Upon application of Corollary 14 with c = 1 and c′ = log(eÃ), we obtain

H(ε;E∞({µ̃k}k∈N), ‖ · ‖2) (95)

=
log2

(
ε−1
)

log(2)(ε−1)

(
1 +

log(3)
(
ε−1
)

log(2)(ε−1)
+ oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

))
. (96)

Likewise, Corollary 14 with c = 1 and c′ = log(eA), yields

H(ε;E∞({µk}k∈N), ‖ · ‖1) (97)

=
log2

(
ε−1
)

log(2)(ε−1)

(
1 +

log(3)
(
ε−1
)

log(2)(ε−1)
+ oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

))
. (98)

Using (95)-(96) and (97)-(98) in (89)-(90), results in

H
(
ε;FA,Cexp , d1

)
=

log2
(
ε−1
)

log(2)(ε−1)

(
1 +

log(3)
(
ε−1
)

log(2)(ε−1)
+ oε→0

(
log(3)

(
ε−1
)

log(2)(ε−1)

))
,

thereby concluding the proof.

C.6 Proofs of Auxiliary Results

C.6.1 Proof of Lemma 10

We argue that covering the ellipsoid Ep by balls of radius ε essentially reduces to covering
the corresponding finite-dimensional ellipsoid Edεp obtained by retaining the first dε semi-
axes of Ep. More precisely, we combine the inequality

N(ε;Ep, ‖ · ‖q) ≥ N
(
ε;Edεp , ‖ · ‖q

)
with Theorem 4 to obtain

N(ε;Ep, ‖ · ‖q)
1

σK(dε) ε ≥ κσK(dε)

(
1
q
− 1
p

)
µ̄dε .

Now, using the definition of dε in (16), this yields

ε ≥ κκ−1 µdε ,

which, upon setting c := κκ−1 and noting that (11) then implies c ≤ 1, concludes the
proof.
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C.6.2 Proof of Lemma 11

The proof is effected by reducing the infinite-dimensional covering problem to a finite-
dimensional one followed by application of Theorem 5.

Lemma 42. Let p, q ∈ [1,∞] and ρ > 0 be real numbers, and let d ≥ 1 be an integer. Let
Ep be an infinite-dimensional ellipsoid with exponentially decaying semi-axes {µn}n∈N∗,
and let Edp be the d-dimensional ellipsoid obtained by retaining the first d semi-axes of Ep.
Then, there exist an integer d∗ and a constant K ≥ 1 not depending on d, such that, for
all d ≥ d∗, it holds that

N
(
ρ ; Edp , ‖ · ‖q

)
≥ N(ρ̄ ; Ep, ‖ · ‖q), with ρ̄ :=

{(
ρq +Kµqd+1

)1/q
, if 1 ≤ q <∞,

max{ρ, µd+1}, if q =∞.

Proof. See Appendix C.6.13.

Now, let d∗ and K ≥ 1 be as in Lemma 42 and let ε∗1 > 0 be such that dε∗1 − 1 ≥ d∗. We
can further assume, without loss of generality, that

ε > K1/q µdε , (99)

as, otherwise, the statement of Lemma 11 follows trivially by setting c := K1/q ≥ 1. Next,
we define the radius

ρ :=

{(
εq −Kµqdε

)1/q
, if 1 ≤ q <∞,

ε, if q =∞,
(100)

which is positive by assumption (99). As a direct consequence of (100), we obtain

ε = ρ̄ :=

{(
ρq +Kµqdε

)1/q
, if 1 ≤ q <∞,

ε, if q =∞,

so that N(ε;Ep, ‖ · ‖q) = N(ρ̄ ; Ep, ‖ · ‖q). Applying Lemma 42 with d = dε−1, then yields

N(ε;Ep, ‖ · ‖q) ≤ N
(
ρ;Edε−1

p , ‖ · ‖q
)
. (101)

Our strategy now consists of first upper-bounding ρ and then using the definition (100)
to obtain a corresponding bound on ε. Specifically, we employ Theorem 5 to obtain

ρ ≤ κσK(dε − 1)

(
1
q
− 1
p

)
µ̄dε−1

N
(
ρ;Edε−1

p , ‖ · ‖q
) 1
σK(dε−1)

. (102)

The assumption ρ ≤ 2µdε−1 required by Theorem 5 will be verified below, in (105).
Further, by (101) and the fact that H

(
ε;Edεp , ‖ · ‖q

)
grows superlinearly in dε, there exists

ε∗2 > 0 such that the hypothesis (10) needed in Theorem 5, that is,

H
(
ρ;Edεp , ‖ · ‖q

)
≥ 2σK(dε), for all ρ ∈ [0, 2µdε ],

is satisfied for all ε < ε∗2. Upon application of (101), the bound (102) becomes

ρ ≤ κσK(dε − 1)

(
1
q
− 1
p

)
µ̄dε−1

N(ε;Ep, ‖ · ‖q)
1

σK(dε−1)

. (103)
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Moreover, we have

κσK(dε − 1)

(
1
q
− 1
p

)
µ̄dε−1

N(ε;Ep, ‖ · ‖q)
1

σK(dε−1)

≤ µdε−1 (104)

as a direct consequence of the definition (16) of dε. Combining (103) and (104), we now
get an upper bound on the radius ρ according to

ρ
(103)

≤ κσK(dε − 1)

(
1
q
− 1
p

)
µ̄dε−1

N(ε;Ep, ‖ · ‖q)
1

σK(dε−1)

(104)

≤ µdε−1. (105)

For all ε < ε∗ := min{ε∗1, ε∗2}, combining (105) with (100) now yields

ε =

{(
ρq +Kµqdε

)1/q ≤ (µqdε−1 +Kµqdε
)1/q ≤ cµdε−1, if 1 ≤ q <∞,

ρ ≤ µdε−1, if q =∞,

where we have used that the semi-axes are non-increasing and we set c := (1 +K)1/q ≥ 1.
This concludes the proof.

C.6.3 Proof of Lemma 17

We first define the sequences

µn := Me−sn and µ̃n := Me−sbn/2c, for all n ∈ N, (106)

and fix f ∈ As(M) with Fourier series coefficients ak. Then, we note that

∞∑
n=1

∣∣∣∣ ãnµ̃n
∣∣∣∣ =

∣∣∣∣ ã1

µ̃1

∣∣∣∣+
∞∑
n=1

[∣∣∣∣ ã2n

µ̃2n

∣∣∣∣+

∣∣∣∣ ã2n+1

µ̃2n+1

∣∣∣∣]

=

∣∣∣∣a0

µ0

∣∣∣∣+

∞∑
n=1

[∣∣∣∣anµn
∣∣∣∣+

∣∣∣∣a−nµn
∣∣∣∣] =

∑
k∈Z

∣∣∣∣ akµ|k|
∣∣∣∣ =

∥∥∥∥∥
{
ak
µ|k|

}
k∈Z

∥∥∥∥∥
`1(Z)

,

where {ãn}n∈N∗ is as defined in (27). Moreover, µ̃n ≥ µ(1)
n readily implies

∥∥{ãn}n∈N∗∥∥1,µ(1)
≥
∞∑
n=1

∣∣∣∣ ãnµ̃n
∣∣∣∣ =

∥∥∥∥∥
{
ak
µ|k|

}
k∈Z

∥∥∥∥∥
`1(Z)

. (107)

The right-hand-side in (107) can be dealt with using the following lemma.

Lemma 43. Let M and s be positive real numbers, and let f be a 2π-periodic function
with Fourier series coefficients {ak}k∈Z satisfying∥∥∥∥∥

{
ak
µ|k|

}
k∈Z

∥∥∥∥∥
`1(Z)

≤ 1,

with the sequence {µn}n∈N as defined in (106). Then, f ∈ As(M).

Proof. See Appendix C.6.14.
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Combining Lemma 43 with (107), it follows that

E1

({
µ(1)
n

}
n∈N∗

)
⊆ ι(As(M)). (108)

Next, upon observing that
√

2 µ̃n ≤ µ(2)
n , for all n ∈ N∗, we readily obtain

∥∥{ãn}n∈N∗∥∥2,µ(2)
≤

( ∞∑
n=1

∣∣∣∣ ãn√
2 µ̃n

∣∣∣∣2
)1/2

=

∥∥∥∥∥
{

ak√
2µ|k|

}
k∈Z

∥∥∥∥∥
`2(Z)

. (109)

Next, we show that the right-most expression in (109) can be upper-bounded by 1.

Lemma 44. Let M and s be positive real numbers, and consider f ∈ As(M) with Fourier
series coefficients {ak}k∈Z. Then, we have∥∥∥∥∥

{
ak√
2µ|k|

}
k∈Z

∥∥∥∥∥
`2(Z)

≤ 1,

where the sequence {µn}n∈N has been defined in (106).

Proof. See Appendix C.6.15.

Using Lemma 44 together with (109), we can conclude that

ι(As(M)) ⊆ E2

({
µ(2)
n

}
n∈N∗

)
. (110)

The proof is finalized by combining (108) and (110).

C.6.4 Proof of Lemma 21

Let f be analytic on D(0 ; r′) with Taylor series coefficients {ak}k∈N, and set ãk := akr
k,

for all k ∈ N. First, note that

dr′(f, 0) = sup
z∈D(0;r′)

|f(z)|. (111)

Application of Lemma 22 yields

M

∥∥∥∥{ ãkµk
}
k∈N

∥∥∥∥
`2

=
∥∥∥{akr′k}

k∈N

∥∥∥
`2
≤ dr′(f, 0)

≤
∥∥∥{akr′k}

k∈N

∥∥∥
`1

= M

∥∥∥∥{ ãkµk
}
k∈N

∥∥∥∥
`1
.

For f ∈ A(r′ ;M), we hence get∥∥∥∥{ ãkµk
}
k∈N

∥∥∥∥
`2
≤ dr′(f, 0)

M
≤ 1,

which, in turn, implies the inclusion relation

ι
(
A(r′ ;M)

)
⊆ E2({µk}k∈N). (112)

Conversely, assuming that {ãk}k∈N ∈ E1({µk}k∈N), we have

dr′(f, 0) ≤M
∥∥∥∥{ ãkµk

}
k∈N

∥∥∥∥
`1
≤M,

which implies f ∈ A(r′ ;M) and hence yields

E1({µk}k∈N) ⊆ ι
(
A(r′ ;M)

)
. (113)

Combining (112) and (113) establishes the desired result.
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C.6.5 Proof of Lemma 30

The function

g : t 7→
√

2πt e
1

12t

2t

is continuous on [1,∞) and satisfies

lim
t→∞

g(t) = 0.

Therefore, g is bounded on [1,∞), i.e.,

sup
t∈[1,∞)

g(t) <∞.

This obviously implies
sup
k∈N∗

g(k) <∞.

We finally observe that

sup
k∈N∗

g(k) ≥ g(1) =

√
π

2
e

1
12 ≥ 1,

which concludes the proof.

C.6.6 Proof of Lemma 35

We start by noting that for K = R, it follows from the usual volume formula for unit balls
in Euclidean spaces (see e.g. [20, Eq. (1)]) that(

V R,d
p,q

) 1
σR(d)

=
Γ(1/p+ 1)

Γ(1/q + 1)

(
Γ(d/q + 1)

Γ(d/p+ 1)

) 1
d

, (114)

where Γ denotes the Euler gamma function. By the Stirling formula, we have

Γ(d/q + 1) =

√
2πd

q

(
d

qe

)d/q
(1 +Od→∞(1/d)),

and

Γ(d/p+ 1) =

√
2πd

p

(
d

pe

)d/p
(1 +Od→∞(1/d)).

Taking ratios yields

Γ(d/q + 1)

Γ(d/p+ 1)
=
pd/p+1/2

qd/q+1/2

(
d

e

)d(1/q−1/p)

(1 +Od→∞(1/d)). (115)

Inserting (115) into (114) gives(
V R,d
p,q

) 1
σR(d)

=
Γ(1/p+ 1) p1/p

Γ(1/q + 1) q1/q e(1/q−1/p)
d(1/q−1/p)(1 +Od→∞(1/d)). (116)

Taking the logarithm on both sides of (116) yields the desired result in the case K = R.
Likewise, for K = C, we use the corresponding volume formula (see e.g. [21, Proposition
3.2.1]) to get (

V C,d
p,q

) 1
σC(d)

=

(
Γ(2/p+ 1)

Γ(2/q + 1)

) 1
2
(

Γ(2d/q + 1)

Γ(2d/p+ 1)

) 1
2d

. (117)

Following the same steps as in the case K = R then yields the desired result.
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C.6.7 Proof of Lemma 36

The result follows directly from

ζ(d) = ψ(d)− ψ(d− 1) = c d log(d)− c (d− 1) log(d− 1)− c c′

= c d log(d)− c d log(d− 1) + c log(d− 1)− c c′

= −c d log(1− 1/d) + c log(d− 1)− c c′

= c log(d) +Od→∞(1).

C.6.8 Proof of Lemma 37

We first note that

δ(d) =
1

d

d∑
n=1

(ψ(d)− ψ(n)) (118)

=
c

d

d∑
n=1

[
d(log(d)− c′)− n(log(n)− c′)

]
= c d log(d)− c

d

d∑
n=1

n log(n)− c c′ d

2
+Od→∞(1). (119)

Sum-integral comparisons now yield the lower bound

d∑
n=1

n log(n) ≥
∫ d

1
t log(t) dt =

1

2

[
d2 log(d)− d2

2 ln(2)
+

1

2 ln(2)

]
=
d2 log(d)

2
− d2

4 ln(2)
+Od→∞(1)

and the upper bound

d∑
n=1

n log(n) ≤
∫ d+1

2
t log(t) dt =

1

2

[
(d+ 1)2 log(d+ 1)− (d+ 1)2

2 ln(2)
− 2

ln(2)

]
=
d2 log(d)

2
− d2

4 ln(2)
+Od→∞(d log(d)).

Combining these bounds, we obtain

d∑
n=1

n log(n) =
d2 log(d)

2
− d2

4 ln(2)
+Od→∞(d log(d)),

which, when inserted into (118)-(119) yields the desired result

δ(d) =
cd log(d)

2
+
c d (ln−1(2)− 2 c′)

4
+Od→∞(log(d)).

C.6.9 Proof of Lemma 38

Starting from the expression(
ψ ◦ ψ−1

)
(u) = u, for all u ∈ (0,∞) and with ψ(t) = ct(log(t)− c′),
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it follows that
u = c ψ(−1)(u)

(
log
(
ψ(−1)(u)

)
− c′

)
. (120)

Setting

x := ln
(
ψ(−1)(u)

)
, (121)

we can rewrite (120) according to

u = c ex
(

x

ln(2)
− c′

)
, or equivalently, x =

u ln(2)

c
e−x + c′ ln(2). (122)

Next, applying Lemma 28 with

a =
u ln(2)

c
and b = c′ ln(2),

the solution of (122) can be expressed as

x = c′ ln(2) +W

(
u ln(2)

c
e−c

′ ln(2)

)
,

which, when combined with the definition (121), yields the desired result

ψ(−1)(u) = exp

{
c′ ln(2) +W

(
u ln(2)

c
e−c

′ ln(2)

)}
.

C.6.10 Proof of Lemma 39

We start with a result on the asymptotic behavior of ψ(−1).

Lemma 45. Let c, c′ > 0. The inverse of ψ : t 7→ ct(log(t)− c′) satisfies

ψ(−1)(u) =
u

c log(u)
+
u log(2)(u)

c log2(u)
+ ou→∞

(
u log(2)(u)

log2(u)

)
.

Proof. See Appendix C.6.16.

We note that by Lemma 45

ψ(−1)(u)2 =

[
u

c log(u)

]2
[

1 +
log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]2

(123)

=

[
u

c log(u)

]2
[

1 + 2
log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]
, (124)

as well as

log
(
ψ(−1)(u)

)
= log

[
u

c log(u)

]
+ log

[
1 +

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]
(125)

= log(u)− log(2)(u)− log(c) +
log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)

= log(u)

[
1− log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]
. (126)
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We further observe that[
1 + 2

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)][
1− log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]
(127)

= 1 +
log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)
. (128)

Combining (123)-(124), (125)-(126), and (127)-(128), we obtain

ψ(−1)(u)2 log
(
ψ(−1)(u)

)
=

[
u

c log(u)

]2

log(u)

[
1 +

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]

=
u2

c2 log(u)

[
1 +

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)]
,

which finalizes the proof.

C.6.11 Proof of Lemma 40

Given f ∈ FA,Cexp with Taylor series coefficients {ak}k∈N, we need to show that{
|a0| ≤ C,
|ak| ≤ C exp{−k(ln(k)− 1− ln(A))}, for k ≥ 1.

From (45) it follows that

sup
z∈D(0;R)

|f(z)| ≤ CeAR, ∀R > 0. (129)

Applying Cauchy’s estimate (47) together with (129), we get

|ak| ≤
CeAR

Rk
, ∀R > 0.

As this bound holds for all values of R > 0, it holds in particular for the value minimizing
the upper bound, or, more specifically, we have

|ak| ≤ inf
R>0

C exp{AR− k ln(R)}. (130)

For k = 0, we readily get
|a0| ≤ C,

as desired. It remains to consider the case k ≥ 1. A straightforward calculation reveals
that the infimum in (130) is attained at

Rk :=
k

A
> 0,

which, upon insertion into (130), yields

|ak| ≤ C exp{ARk − k ln(Rk)} (131)

= C exp{−k(ln(k)− 1− ln(A))}. (132)

This concludes the proof.
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C.6.12 Proof of Lemma 41

We first note that C̃ is well-defined owing to Lemma 30. Next, consider a sequence
{ak}k∈N satisfying{

|a0| ≤ C̃,
|ak| ≤ C̃ exp

{
−k
(

ln(k)− 1− ln
(
Ã
))}

, for k ≥ 1.
(133)

Under the definition

f(z) =

∞∑
k=0

akz
k,

we need to show that
|f(z)| ≤ CeA|z|, for all z ∈ C.

To this end, fix z ∈ C and start with the following chain of inequalities

|f(z)| =

∣∣∣∣∣
∞∑
k=0

akz
k

∣∣∣∣∣ ≤
∞∑
k=0

|ak||z|k (134)

(133)

≤ C̃ +
∞∑
k=1

C̃ exp
{
−k
(

ln(k)− 1− ln
(
Ã
))}
|z|k

= C̃

(
1 +

∞∑
k=1

ekÃk|z|k

kk

)
. (135)

Applying Stirling’s inequality, we obtain

ekÃk|z|k

kk
≤ Ak|z|k

k!

√
2πk e

1
12k

2k
, for all k ≥ 1. (136)

Using (136) in (134)-(135), we get

|f(z)| ≤ C̃

(
1 +

∞∑
k=1

Ak|z|k

k!

√
2πk e

1
12k

2k

)

≤ C̃

(
1 + sup

k∈N∗

√
2πk e

1
12k

2k

∞∑
k=1

Ak|z|k

k!

)

≤ C̃

[
sup
k∈N∗

√
2πk e

1
12k

2k

] ∞∑
k=0

Ak|z|k

k!
= CeA|z|,

where the last inequality relies on the property

sup
k∈N∗

√
2πk e

1
12k

2k
≥ 1

established in Lemma 30. This concludes the proof.

C.6.13 Proof of Lemma 42

Let {x1, . . . , xN} be a ρ-covering of Edp with respect to the ‖ · ‖q-norm. We introduce the
vector obtained by completing the coordinates of xi with infinitely many zeros as

x̄i := (xi1, . . . , x
i
d, 0, . . . ), for all i ∈ {1, . . . , N}.
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The proof is then effected by showing that {x̄1, . . . , x̄N} is a ρ̄-covering of Ep. To this end,
take x̄ ∈ Ep and define the vector

x := (x̄1, . . . , x̄d)

obtained by retaining the first d components of x̄. By definition, x ∈ Edp . As {x1, . . . , xN}
is a ρ-covering of Edp in the ‖ · ‖q-norm, there exists an index j ∈ {1, . . . , N} such that∥∥x− xj∥∥

q
≤ ρ. (137)

Now, consider the case q ∈ [1,∞), and observe that∥∥x̄− x̄j∥∥q
q

=

d∑
n=1

∣∣x̄n − x̄jn∣∣q +

∞∑
n=d+1

|x̄n|q. (138)

The first term on the right-hand-side of (138) equals ‖x− xj‖qq and can hence be upper-
bounded by ρq owing to (137). We next observe that, thanks to x̄ ∈ Ep, |x̄n| ≤ µn, for
n ∈ N∗. This immediately implies

∞∑
n=d+1

|x̄n|q ≤
∞∑

n=d+1

µqn = µqd+1

∞∑
n=d+1

(
µn
µd+1

)q
. (139)

We will need to further upper-bound the right-hand-side in (139), which will be effected
through the following result.

Lemma 46. Let ψ be a decay rate function. For every sequence {µn}n∈N∗ of ψ-exponentially
decaying semi-axes, there exist a positive real number c and an n∗ ∈ N∗ such that, for all
pairs of integers n and m satisfying n ≥ m ≥ n∗, it holds that

µn
µm
≤ 2c(m−n).

Proof. See Appendix C.6.17.

With n∗ according to Lemma 46, setting d∗ := n∗ − 1, it follows from Lemma 46 that
∞∑

n=d+1

(
µn
µd+1

)q
≤

∞∑
n=d+1

2cq(d+1−n) =

∞∑
n=0

2−cqn =
2cq

2cq − 1
, (140)

for all d ≥ d∗. Upon defining the constant

K :=
2cq

2cq − 1
≥ 1,

we get, from (139) and (140), the bound

∞∑
n=d+1

|x̄n|q ≤ Kµqd+1.

Consequently, (138) becomes∥∥x̄− x̄j∥∥q
q
≤ ρq +Kµqd+1 = ρ̄q,

which shows that {x̄1, . . . , x̄N} is a ρ̄-covering of Ep. Finally noting that K does not
depend on d as required, the result is established for q ∈ [1,∞). For q =∞, we have∥∥x̄− x̄j∥∥

q
= sup

n∈N∗

∣∣x̄n − x̄in∣∣ = max

{
max

n=1,...,d

∣∣x̄n − x̄in∣∣, sup
n≥d+1

|x̄n|

}
. (141)

As maxn=1,...,d

∣∣x̄n − x̄in∣∣ ≤ ρ thanks to (137) and supn≥d+1|x̄n| ≤ µd+1, it follows that
{x̄1, . . . , x̄N} is a max{ρ, µd+1}-covering of Ep.
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C.6.14 Proof of Lemma 43

Consider the analytic extension of f to S (recall Definition 15), i.e.,

g : z ∈ S 7→
∞∑

k=−∞
ake

ikz,

and write z = x+ iy, with |y| < s. Then, it follows from

∞∑
k=−∞

∣∣∣akeik(x+iy)
∣∣∣ ≤ ∞∑

k=−∞
|ak|es|k| = M

∥∥∥∥∥
{
ak
µ|k|

}
k∈Z

∥∥∥∥∥
`1(Z)

≤M,

that the infinite series defining g is absolutely and uniformly convergent on S, which
implies analyticity of g on S. In particular, as g = f on R ⊆ S, we have that g is the
analytic continuation of f to S. It remains to prove that supz∈S |g(z)| ≤M . To this end,
fix s′ ∈ R such that |s′| < s and apply Lemma 48 which yields

|g(x+ is′)| =

∣∣∣∣∣
∞∑

k=−∞
ake

ikx−ks′
∣∣∣∣∣ ≤

∞∑
k=−∞

|ak|es|k| (142)

= M

∥∥∥∥∥
{
ak
µ|k|

}
k∈Z

∥∥∥∥∥
`1(Z)

≤M. (143)

Taking the supremum in (142)-(143), according to

sup
z∈S
|g(z)| = sup

x∈R
sup
|s′|<s
|f(x+ is′)| ≤M,

concludes the proof.

C.6.15 Proof of Lemma 44

Fix s′ ∈ (0;s) and define
µ′n := Me−s

′n, for all n ∈ N.

We start with the observation that

M2

∥∥∥∥∥
{
ak
µ′|k|

}
k∈Z

∥∥∥∥∥
2

`2(Z)

=
∞∑

k=−∞

∣∣∣ak e|k|s′∣∣∣2 (144)

≤
∞∑

k=−∞

∣∣∣ak e−ks′∣∣∣2 +
∞∑

k=−∞

∣∣∣ak eks′∣∣∣2. (145)

Next, using Parseval’s identity combined with Lemma 48, we get

∞∑
k=−∞

∣∣∣ak e−ks′∣∣∣2 =
1

2π

∫ 2π

0

∣∣f(x+ is′)
∣∣2 dx ≤ sup

z∈S
|f(z)|2 ≤M2. (146)

Therefore, upon taking the limit s′ → s in (146), the sequence of partial sums {
∑N

k=−N
∣∣ak e−ks∣∣2}N∈N∗

is non-decreasing and bounded by M2. By [31, Theorem 3.14], it hence converges to a
limit which is also bounded by M2, i.e., we have

∞∑
k=−∞

∣∣∣ak e−ks∣∣∣2 ≤M2. (147)
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Likewise, one can show that
∞∑

k=−∞

∣∣∣ak eks∣∣∣2 ≤M2. (148)

Using (147) and (148) in (144)-(145) hence yields∥∥∥∥∥
{

ak√
2µ|k|

}
k∈Z

∥∥∥∥∥
`2(Z)

≤ 1,

which concludes the proof.

C.6.16 Proof of Lemma 45

We start by observing that

ln

 u ln(2) e−c
′ ln(2)

c ln
(
u ln(2) e−c′ ln(2)

c

)


= −c′ ln(2) + ln

(
u

c[log(u) +Ou→∞(1)]

)
(149)

= −c′ ln(2) + ln

(
u

c log(u)

[
1 +Ou→∞

(
1

log(u)

)])
= −c′ ln(2) + ln

(
u

c log(u)

)
+Ou→∞

(
1

log(u)

)
. (150)

Furthermore, we have

ln(2)

(
u ln(2) e−c

′ ln(2)

c

)
ln
(
u ln(2) e−c′ ln(2)

c

) =
ln(2)(u) +Ou→∞

(
1

ln(u)

)
ln(u) +Ou→∞(1)

(151)

=
log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)
. (152)

Combining (149)-(150) and (151)-(152) with (48) in Lemma 29, we obtain

W

(
u ln(2)

c
e−c

′ ln(2)

)
(153)

= ln

 u ln(2) e−c
′ ln(2)

c ln
(
u ln(2) e−c′ ln(2)

c

)
+

ln(2)

(
u ln(2) e−c

′ ln(2)

c

)
ln
(
u ln(2) e−c′ ln(2)

c

) (1 + ou→∞(1))

= −c′ ln(2) + ln

(
u

c log(u)

)
+

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)

= −c′ ln(2) + ln

(
u

c log(u)

)
+ ln

{
1 +

log(2)(u)

log(u)
+ ou→∞

(
log(2)(u)

log(u)

)}

= −c′ ln(2) + ln

{
u

c log(u)
+
u log(2)(u)

c log2(u)
+ ou→∞

(
u log(2)(u)

log2(u)

)}
. (154)
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Using (153)-(154) in the expression for ψ(−1) according to Lemma 38, yields

ψ(−1)(u) = exp

{
c′ ln(2) +W

(
u ln(2)

c
e−c

′ ln(2)

)}
=

u

c log(u)
+
u log(2)(u)

c log2(u)
+ ou→∞

(
u log(2)(u)

log2(u)

)
,

thereby concluding the proof.

C.6.17 Proof of Lemma 46

Let t∗ be the parameter of ψ and set

n∗ := dt∗e+ 1.

Then, from (12), we get
ψ(m)

m
≤ ψ(n)

n
,

which directly implies
ψ(m)− ψ(n)

m
≤ ψ(n)

(
1

n
− 1

m

)
,

or, equivalently,

ψ(n)− ψ(m) ≥ mψ(n)

(
1

m
− 1

n

)
. (155)

Furthermore, we have

ψ(n)

n
≥ ψ(n∗)

n∗
=: c > 0,

which, when used in (155), yields

ψ(n)− ψ(m) ≥ cmn

(
1

m
− 1

n

)
= c (n−m).

Finally, invoking (13) results in

µn
µm

= exp{− ln(2)(ψ(n)− ψ(m))} ≤ 2c(m−n),

which is the desired result.

C.6.18 Statement and Proof of Lemma 47

Lemma 47. Let p, q ∈ [1,∞] and let Ep be the infinite-dimensional ellipsoid with semi-
axes {µn}n∈N∗. Then, the effective dimension

dε = min
{
k ∈ N∗ | N(ε;Ep, ‖ · ‖q)

1
σK(k) µk ≤ κσK(k)

( 1
q
− 1
p

)
µ̄k

}
,

with µ̄k denoting the geometric mean of the first k semi-axes, for all k ∈ N∗, is well-defined
for all ε > 0 and limε→0 dε =∞. Here, κ is the constant defined in Theorem 5.
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Proof. To prove that the effective dimension is well-defined, it suffices to show that, for
all ε > 0, there exists a k ∈ N∗ such that

N(ε;Ep, ‖ · ‖q) ≤
[
κσK(k)

( 1
q
− 1
p

) µ̄k
µk

]σK(k)

, (156)

which, in turn, is guaranteed by[
κσK(k)

( 1
q
− 1
p

) µ̄k
µk

]σK(k)
k→∞−−−→∞.

It is hence sufficient to establish that

log

(
µ̄k
µk

)
+

(
1

q
− 1

p

)
log(σK(k))

k→∞−−−→∞,

which holds as a direct consequence of the identity

log

(
µ̄k
µk

)
(13)
=

1

k

k∑
n=1

[ψ(k)− ψ(n)] ≥ κ(k − 1),

for some κ > 0 independent of k, with the inequality relying on the assumption that ψ is
a decay rate function and therefore grows at least linearly.

Finally, limε→0 dε = ∞ is an immediate consequence of the right hand side in (156)
being finite for all k ∈ N∗, while the left hand side goes to infinity as ε approaches zero.

C.6.19 Statement and Proof of Lemma 48

Lemma 48. Let s be a positive real number and let s′ ∈ R be such that |s′| < s. Consider
the 2π-periodic function f analytic on the strip S of width s from Definition 15. Then,
the Fourier series coefficients of the function

x 7→ f(x+ is′) are given by
{
ake
−ks′

}
k∈Z

.

Proof. We first define

γ : t ∈ [0, 1] 7→


8πt, t ∈ [0, 1/4],

2π + is′(4t− 1), t ∈ [1/4, 1/2],

8π(3/4− t) + is′, t ∈ [1/2, 3/4],

4is′(1− t), t ∈ [3/4, 1],

which is a closed contour in S (see Figure 4).

Re(z)

Im(z)

s′
γ([0, 1])

2π0

Figure 4: Plot of the contour γ.

45



As the function
z 7→ f(z) e−ikz

is analytic in S by assumption, we can apply Cauchy’s integral theorem on the contour γ
to get ∫

γ([0,1])
f(z) e−ikz dz = 0, for all k ∈ Z. (157)

Using the 2π-periodicity

f(z) e−ikz = f(z + 2π) e−ikz = f(z + 2π) e−ik(z+2π),

it follows from (157) that∫
γ([1/4,1/2])

f(z) e−ikz dz +

∫
γ([3/4,1])

f(z) e−ikz dz = 0, for all k ∈ Z. (158)

Combining (157) and (158) yields, for all k ∈ Z,

ak =
1

2π

∫ 2π

0
f(x) e−ikx dx = 4

∫
γ([0,1/4])

f(z) e−ikz dz (159)

= −4

∫
γ([1/2,3/4])

f(z) e−ikz dz

=
1

2π

∫ 2π

0
f(x+ is′) e−ikx+ks′ dx. (160)

Rearranging terms, we obtain

ake
−ks′ =

1

2π

∫ 2π

0
f(x+ is′) e−ikx dx, for all k ∈ Z,

which concludes the proof.
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