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Abstract 

Wireless systems employing multiple antennas at the 
transmitter and the receiver have recently been shown to 
have tlie potential of achieving extraordinary bit rates. In 
this paper: y e  consider the problem of blind channel esti- 
mation in single-carrier broadband multi-antenna systems. 
Assuming a linear time-invariant matrix channel with delay 
spread, we propose an algorithm for the blind estimation of 
the matrix channel which uses second-order cyclostation- 
ary statistics. Our approach employs nonredundantprecod- 
ing and yields unique estimates (up to a diagonal matrix of 
phase terms). Furthermore, it does not require knowledge 
of the channel order; imposes no restrictions on the channel 
zeros, and exhibits low sensitivity to stationary noise. We 
present simulation results demonstrating the performance 
of the proposed method. 

1. Introduction 

Deploying multiple antennas at both the transmitter and 
the receiver of a wireless system has recently been shown 
to yield extraordinary bit rates [ 11-[4]. The corresponding 
technology, known as spatial multiplexing [ 11 or BLAST 
[ 2 , 5 ] ,  allows an impressive increase in data rate in a wire- 
less radio link without additional power or bandwidth con- 
sumption. In practice, however, to get the promised in- 
crease, accurate channel state information is required in the 
receiver. This information can be obtained by sending train- 
ing data and estimating the channel [6, 71. The training 
overhead required, unfortunately, is more significant in es- 
timating multiple-input multiple-output (MIMO) channels. 

'This work was supported in part by FWF-grant J1629-TEC and by 
through the Telecom Ceoter at Stanford funding from Ericsson, Inc. 

University. 

To avoid this problem we propose a method for blind chan- 
nel estimation. 

Blind estimation of a time-dispersive space-time channel 
is a practical example of the need for blind estimation of a 
general MIMO system. There is an abundance of literature 
on that subject. Due to lack of space, we shall not discuss all 
the existing ideas and algorithms; rather we refer the reader 
to [8] which contains an excellent overview of the subject 
and an extensive reference list. Some recent references are 
for example [9, 10, 111. 

In this paper, we propose a nonredundant precoding 
scheme, which allows the receiver to blindly estimate the 
MIMO system using second-order cyclostationary statis- 
tics only. The new method identifies the matrix channel 
on a subchannel by subchannel basis, i.e., each scalar sub- 
channel is identified individually. Important aspects of the 
proposed algorithm include: i t  does not require knowledge 
of the channel order, it does not impose restrictions 011 

channel zeros, and it exhibits low sensitivity to stationary 
noise. Furthermore, our method yields unique estimates up 
to a diagonal matrix of phase terms. We note that an ap- 
proach similar to the one proposed in this paper recently 
appeared in [ 121. Our algorithm differs from that suggested 
in [12] in that we use cyclostationarity instead of conju- 
gate cyclostationarity, it works for arbitrary symbol con- 
stellations and arbitrary stationary noise, the estimator per- 
formance does not degrade significantly if the number of 
sources increases, the knowledge of the pulse shaping fil- 
ter can be incorporated to improve estimator performance, 
and the phase ambiguity is resolved up to only a diagonal 
matrix of phase terms. In this work, we restrict our at- 
tention to single-carrier modulation. An extension of the 
proposed idea to blind equalization of OFDM-based spatial 
multiplexing systems will be provided in [ 131. 

The rest of this paper is organized as follows. In Sec- 
tion 2 broadband single-carrier based spatial multiplexing 
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systems are described and our assumptions and some nota- 
tion are introduced. In Section 3 we provide the novel algo- 
rithm and we consider a simple example with two transmit 
and two receive antennas. In Section 4 we describe gener- 
alizations of our algorithm to an arbitrary number of anten- 
nas, and we provide a refinement which allows to exploit 
knowledge of the transmitter pulse shaping filter to improve 
the estimator performance. Section 5 contains simulation 
results, and Section 6 provides our conclusions. 

2 Spatial multiplexing systems 

Let us briefly describe the system model used in this pa- 
per (see Fig. l). In the following MT and M R  denote the 
number of transmit-and receive antennas, respectively. Us- 
ing single-carrier modulation, MT different data streams 
are sent simultaneously from the MT transmit antennas, 
pass through a time-dispersive matrix channel, and arrive 
at the M R  receive antennas. Since the individual trans- 
mit signals occupy the same frequency-band there is se- 
vere cochannel interference. This cochannel interference 
and channel dispersion can be mitigated in the receiver, for 
example, by employing a space-time equalizer [9]. 

We shall adopt the following notation. Let T denote the 
symbol period, c i )  the symbol stream transmitted from the 
I-th antenna, dk , l  ( t )  the scalar subchannel between the k-th 
receive and the I-th transmit antenna, p k ( t )  the spatially un- 
correlated stationary noise process for the k-th receive an- 
tenna, and g ( t )  the transmitter pulse shaping filter assumed 
to be the same for all antennas. Then by defining the trans- 
mitted signal corresponding to the l-th antenna as 

00 

S [ ( t )  = C t ) g ( t  - kT), 1 = 0, 1, ..., h'fT - 1, 
k=-m 

the received signal at the k-th antenna can be written as 

MT-1 m 

1=0 -a 
r k ( t )  = / d k , l ( t  - 7) s1(T) dT + P k ( t ) *  

Now let 

[D(t)Ik,l = dk,f(t) ,  
where k = 0,1, ..., M R  - 1 and I = 0, 1, ..., MT - 1. Then 
we can write the MIMO system inputloutput relation as 

with the symbol * standing for vector-matrix convolution. 
Note that each antenna k receives a superposition of the 
data symbols from each transmit antenna I convolved with 
the respective IS1 channel d k , i ( t )  making both channel esti- 
mation and equalization quite challenging. 

Fig. I .  Space-time coding modem. 

3 Blind MIMO channel estimation 

In this section, we shall introduce the novel algorithm 
for blind MIMO channel estimation and demonstrate the 
basic idea using a simple example with two transmit and 
two receive antennas. The generalization to more antennas 
and further refinements of the algorithm will be discussed 
in Sec. 4. 

The basic idea of our algorithm is to perform nonre- 
dundant precoding on each transmitted sequence such that 
the cyclostationary statistics in the receiver allow sepa- 
rate identification of the scalar subchannels d k , l ( t )  (k = 
0,1, ..., M R  - 1, I = 0, 1,  ..., MT - 1). This is achieved 
by providing each transmit antenna with a different signa- 
ture in the cyclostationary domain which allows us to null 
out all but one (or several) transmit antennas at a time. Us- 
ing this approach, we can identify the matrix channel up 
to a constant diagonal matrix of phase factors, which is an 
ambiguity generally accepted in practice. Effectively, af- 
ter space-time equalization, the symbol streams will be de- 
coded up to a phase rotation, which will in general be dif- 
ferent for different symbol streams. This ambiguity can ei- 
ther be resolved using higher-order statistics or by sending 
pilot symbols. Alternatively, if differential detection is em- 
ployed, the phase rotation can be ignored. 

Nonredundant precoding. Our approach is based on 
nonredundant precoding which consists of multiplying the 
transmitted data symbols (taken from a complex finite al- 
phabet) by M-periodic precoding sequences. The specific 
criterion for designing the precoding sequences will be dis- 
cussed later. We note that this form of precoding has pre- 
viously been suggested by Serpedin and Giannakis in [ 141 
to introduce cyclostationarity in the transmit signal thereby 
making blind channel estimation in single-antenna symbol- 
rate sampled single-carrier systems possible. The general 
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idea of transmitter induced cyclostationarity has been sug- 
gested previously in [15, 161. 

The precoded transmit signal corresponding to the I-th 
antenna is given by 

m 

S l ( t )  = 1 c!')a!')g(t - k T ) ,  I = 0, 1, .", MT - 1, 
k = - w  

where a t )  = i s  the I-th M-periodic precoding se- 
quence. This form of precoding evidently comes at the cost 
of slightly reduced spectral efficiency since the symbol con- 
stellation will be deformed due to the multiplication by the 
precoding constants. 

Oversampling in the receiver. The receiver oversam- 
ples the vector signal r ( t )  by a factor of P (with respect to 
the symbol rate), i.e., it computes 

r c ~ ~ ) a ~ ~ )  1 

A with the vector r[n] = r (n$) and the matrix function 
H[n] = H ( n s ) ,  where H(t) is obtained by convolving 
each of the entries of the matrix D(t) with the transmitter 
pulse shaping filter g( t ) .  

Cyclostationary statistics. Now, defining the correla- 
tion matrix of the vector random process r[n] as1 

A 

c , - [n ,~]  = €{r[n]rH[n - T I )  
and assuming that the data sequences c!) are white and un- 
correlated, i.e., 

E { C p  c$"> = &[k - k']b[Z - 1'] 

and statistically independent of the data symbols, we obtain 

c, .[n,~] = H[n - IP]diag{lali)(2a5}~- '  
m 

I=-m 

H H [ n  - IP - T ]  + c,[T], 

where c,[T] = E{p[n]pH[n - TI}. Using the M- 
periodicity of the precoding sequences, it follows that 

cr[n, T ]  = cr [n + PMy 7 1 1  

which implies that the vector random process r[n] is cyclo- 
stationary with cyclostationarity period P M .  By cyclosta- 
tionary vector random process with period PM we mean 

' E  stands for the expectation operator and the superscript denotes 
conjugate transposition. 

that each of the entries in the vector is a scalar cyclosta- 
tionary random process with cyclostationarity period P M .  
Note that even if symbol rate sampling is employed (i.e. 
P = l), cyclostationarity will be introduced in the trans- 
mitter thanks to the precoding operation, and the cyclosta- 
tionarity period will be M. Therefore, oversampling is not 
crucial to our algorithm. 

Next, we expand cr [n, T ]  into a Fourier series with re- 
spect to n 

PM-1 

C , [ k ,  T ]  = - cp[n, TI e - j f i k n  
n=O PM 

and we compute the z-transform of the resulting Fourier se- 
ries coefficients to finally obtain the cyclic spectrum 

m 

T=-m 

where 

H(z) = H H ( $ ) .  and S , ( z )  = E,"=-, cp[n] z - ~ .  Note 
that the influence of stationary noise can be eliminated by 
considering nonzero cycles k # 0. 

Simple example. We shall next explain the basic idea 
of our algorithm using a simple example with 2 trans- 
mit and 2 receive antennas. The more general case will 
briefly be discussed in Sec. 4. Consider the 4-periodic 
precoding sequences a(') = [l 1.1 1 1.1) and a( l )  = 
(1.1 1 1 1.11. This yields @ ( O )  = (4.42 0 -0.42 01 
and = [4.42 0.21 + j0.21 0 0.21 - j0.211. In the 
following, in order to keep the discussion more general we 
shall stick to the notation M for the period of the precoding 
sequences instead of specializing to M = 4. We shall also 
use kl = 1 and kz = 2. Since @ ( o ) [ f k l ]  = 0, we obtain 
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Now, we can use a slightly modified version of the 
frequency-domain algorithm proposed by Tong et. al. in 
[ 171 for blind channel estimation in single-antenna single- 
carrier systems, to identify the subchannels H o , ~  (%) and 
H l , l ( z )  from [ S r [ * k l ,  Z)]O,O and [Sr[fkl1 z)]1,1. respec- 
tively, and the subchannels Ho,o(z) and Hl,o(z) from 
[S,[fkz,  Z ) ] O , O  and [S,[fkz, 2)]1,1, respectively. Let us 
briefly describe the approach. From (4) we get 

(6)  [sr[k21 z)lo,o - - H o , o ( . z e j h k z )  
[sr[-k21 .)]o.o Ho,o(ze-j*k2)1 

where we have used the fact that @(O)[k2] = @(')[-kz]. Eq. 
(6) can now be rewritten as 

[sr[k29 z)lo,o ~o,o(ze-J*~z) - 

[ ~ , [ - k 2 ,  .z)lO,o Ho.o(rej*kz) = 0. (7) 

Denoting the length of the subchannel filter Ho,o(z)  as 
Lho,o, rewriting (7) in the time-domain yields 

L h O , O  -1 

[[C,[k2, 12 - 1] ]0 ,0  ej*kZ1 

I 
1 =o 

- [Cr[-k2, n - I ] ] o , o  e-j%kzl h0,0[1] = 0 (8) 

for n E Z. In order to solve for the channel ho,o[n] we 
rewrite (8) in vector-matrix form as 

[Tti)D-kz - T(-")Dk2] 090 ho,o = 0 (9) 

From (9) it follows that the subchannel h o , ~  can be uniquely 
recovered if the matrix S g i ' - k z )  has nullity one. Using 
Theorem 1 in [14] it can be shown that this is the case 
if and only if there is no 1 E [l, Lhoqo - 11 such that 
ej*2kzl = 1.  Identifiability irrespectively of channel zero 
locations is therefore guaranteed if Lho,o 5 E. In our 
case this condition reduces to Lho,o 5 P. In practice the 
oversampling factor P and the period of the precoding se- 
quences M should be chosen to satisfy the identifiability 
condition. 

If the true correlations C , [ ~ , T ]  are known the chan- 
nel can be found as the unique null eigenvector of 
s0,o ( k z ' - k z ) H  S r i ' - k z )  and the channel order can be estimated 
as the minimum order Lho,o for which the matrix S F i ' - k z )  
has nullity one. In practice, however, C , [ ~ , T ]  has to be 
estimated from a finite data record {r[n]};:,' of length L 
according to [ 181 

The channel estimate is then obtained as 

where ggi'-kz) is an estimate of S g i ' - k z )  obtained by re- 
placing C , [ ~ , T ]  in (1) by the estimates e r [ k , ' r ] .  

Performing the same procedure as above for (2),(3), and 
( 5 )  yields estimates of the remaining scalar subchannels. 
Note that we eliminated the influence of stationary noise 
since we considered nonzero cycles k # 0 only. Each of 
the scalar subchannels has now been identified up to a phase 
factor, which will in general be different for different sub- 
channels. We shall next describe how this remaining phase 
ambiguity can be resolved up to a diagonal matrix of phase 
terms. 

Resolving the phase ambiguity. Assume that the true 
filter has been identified up to a phase ambiguity denoted 
as e j B k J  for the filter Hk,l(z)  or equivalently the true fi l-  
ter Hk,l(r)  is given by Hk, l ( z )  = ejdtJHl:/(t), where 
Hi: / ( z )  is the estimate of the filter H k , ~ ( . z )  obtained using 
the subspace-based algorithm described above. Consider- 
ing [S,[k2, z)]l,o we obtain 

[s,.ikz, .z)ll,o = Hi:J(zej*kz) 

~ ( 0 )  [k21 fii;J (z)ej(dl .o -60.0) 

which allows us to estimate the phase difference & = 
d1,o - 40,o. More specifically, going back to the time- 
domain we obtain an estimate for & as 
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where r r ) [n]  = .El hFi[n + I]e-J*k2(n+')hcr [I] and 
1 := {nlrf)(n] # OF. In practice, it is recommended to 
average over the interval Z, i.e., 

Further averaging can be done by considering [S , (kz ,  z)]0,1 
and performing the same procedure. The Lhase difference 
4 0 , ~  -41,1 can be estimated similarly from Cr[kl, n]. Now, 
since we have estimated the phase differences 41,o - 40,o 
and 40,1 - &,I, we have identified the channel transfer ma- 
trix up to a diagonal matrix of phase terms, i.e., any matrix 

G ( z )  = H(z) diag{ej@'aa},=o,l 

is also a valid solution of our algorithm. This shows that 
using a space-time equalizer the individual symbol streams 
can be recovered up to a phase rotation. 

4 Extensions of the algorithm 

In this section, we present a refinement of the new algo- 
rithm, which allows to improve the estimator performance if 
the receiver knows the transmitter pulse shaping filter g ( t ) .  
We also describe how the algorithm can be generalized to 
more than two antennas. 

Exploiting knowledge of the transmitter pulse shap- 
ing filter. Continuing with the simple example discussed in 
the previous section, if the sampling rate is high enough to 
avoid aliasing, we have 

Hk,i(z)  = G(z)Dk,i(z), k,l= 0,1, 

where G ( z )  = C,"==_,g (n:) z-" and D k , l ( t )  = 
E,=-, d k , l [ n ]  Z-". Now, similarly to (7) we can build 
up a linear system of equations whose solution yields the 
channd estimate (i.e. the channel without transmitter pulse 
shaping filter) as 

m 

(S, [k2, z)]o,o D0,o (ze-3 *kz) G(ze-j* k2 1 -  
[sr[-kp, z)l0,0 Do,a(zej*kz) ~ ( t e j * ~ , )  = 0. 

Since G(z) is known at the receiver an equation similar to 
(9) can be built up and do,o[n] can be estimated. The details 
of this algorithm will be reported in the multi-carrier con- 
text in [13]. Using a different subspace-based algorithm, it  
has been observed previously in the single-antenna case in 
[ 191 that incorporating knowledge of the transmitter pulse 
shaping filter in the channel estimation procedure yields im- 
proved estimator performance. Although a proof is unavail- 
able thus far, simulation results indicate that this improves 
estimation accuracy in our case as well. 

Generalization to arbitrary number of antennas. Let 
us next discuss the extension of our algorithm to an arbitrary 
number of antennas. Basically, one has to construct MT 
precoding sequences such that there is exactly one sequence 
ai"') which satisfies @(al)[s] # 0 for at least one cycle 
s E (0, M - 1) and @(i) [s ]  = 0 for i  # i l .  Using this cycle 
s the corresponding filters Hl,i1 ( z )  (I = 0,1,  ..., M R  - 1) 
can be identified. Next, picking a cycle s E (0, M - 11 and 
an index 22 # il such that @(Zz)[s] # 0, @(*l)[s] # 0, and 
@(*)(SI = 0 for i # i l ,  i2, we can identify the subchannel 
filters Hl,i2 (2) (I = 0, 1, ..., M R  - 1) by subtracting out the 
estimates of the filters  HI,,^ ( z )  and applying the algorithm 
provided in the previous section. This procedure has to be 
performed for all i E [0, MT - 11 and therefore yields a 
column by column identification of the channel matrix. We 
note that this approach is prone to error propagation. How- 
ever, the conditions imposed on the precoding sequences 
are not as restrictive as if one would require that the ala) 
are such that a subchannel by subchannel identification can 
be performed without having to eliminate the previous esti- 
mates by subtracting them out. We finally note that we do 
not have a general procedure for the design of precoding se- 
quences. For small numbers of antennas (which is usually 
the case in practice) it is fairly easy to obtain precoding se- 
quences. An example for the case of three transmit antennas 
is given by 

[a P a P a PI 
[P CY a a PI 

d2) = [p cy a p a cy], 

= 
= 

where a # p # 0 are arbitrary (complex) constants. 

5 Simulation Results 

We finally provide simulation results demonstrating the 
performance of our algorithm on a simple 2 by 2 matrix 
channel. We did not assume knowledge of the pulse shaping 
filter g ( t ) .  The overall channel to be identified is given by2 

ho,o = [ I  -1 2 )  
ho,l = [ I  1 1.21 
h1,o = (1.5 - 1 1.51 
h1,l = [0.5 -0.75 0.751 

with the precoding sequences a(') = 11.1 1 1 1.1 1 1) 
and a(') = [ 1.1 1.1 1.1 1 1 11, oversampling factor P = 
1, and packet size of 1200 i.i.d. 4-QAM symbols. We 
used the MSE and the average bias, both averaged over 
2000 independent Monte Carlo trials, to evaluate the chan- 

21n the simulations the channels have been normalized to have norm 1. 
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ne1 estimation error. Fig. 2 shows the MSE and the average 
bias (both averaged over all four subchannels) as a function 
of S N R  = 10 loglo (w ), where I Y ~  denotes the noise 
variance of each of the scalar white noise processes po[n]  

imposes no restrictions on channel zeros, and exhibits low 
sensitivity to stationary noise. 
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