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ABSTRACT
In this paper, using a spatial broadband channel model tak-
ing into account transmit and receive antenna correlation,
we study the influence of propagation conditions on the
performance of space-frequency coded OFDM. For a given
space-frequency code, we quantify the achievable diversity
order and coding gain as a function of the transmit and
receive correlation matrices. We find that the presence of
transmit correlation results in widely varying performance
losses. High-rate space-frequency codes such as spatial mul-
tiplexing are typically significantly more affected by trans-
mit correlation than low-rate codes such as space-frequency
block codes.

I. INTRODUCTION AND OUTLINE

In recent years the use of spatial (or antenna) diversity
has become increasingly popular, which is mostly due to
the fact that it can be provided without loss in spectral
efficiency. Space-time coding [1], [2], [3] has evolved as a
promising technique for improving link reliability in systems
employing multiple transmit antennas.

Broadband multiple-input multiple-output (MIMO) an-
tenna channels with delay spread offer spatial diversity as
well as frequency diversity. Orthogonal frequency division
multiplexing (OFDM) [4] significantly reduces receiver com-
plexity in broadband MIMO wireless systems [5], [6]. Space-
frequency coded MIMO-OFDM [7], [8] therefore seems to
be a particularly promising technology for future broadband
wireless systems.

Contributions. In this paper, using a physically mo-
tivated broadband MIMO channel model taking into ac-
count transmit and receive antenna correlation, we study
the impact of propagation conditions on the performance
of space-frequency coded OFDM. Our discussion incorpo-
rates space-frequency codes as well as OFDM-based spatial
multiplexing [5], [6]. In the remainder of this paper we
shall refer to both signaling techniques as space-frequency
coding. Our contributions are summarized as follows.
• We extend the results reported in [7] to incorporate trans-
mit correlation and derive the error rate behavior of space-
frequency coded OFDM as a function of transmit and re-
ceive angle spread and antenna spacing.
• For a given space-frequency code, we quantify the achiev-
able diversity order and coding gain as a function of the
transmit and receive correlation matrices.
• It is shown that the presence of transmit correlation re-
sults in widely varying performance losses. In particular,
we find that high-rate space-frequency codes such as spa-
tial multiplexing are typically significantly more affected
by transmit correlation than low-rate codes such as space-
frequency block codes.

Organization of the paper. The rest of this paper is
organized as follows. In Sec. 2, we introduce the channel
model, and we briefly review space-frequency coded OFDM.

In Sec. 3, we derive the error rate performance of space-
frequency coded OFDM in the presence of transmit and
receive antenna correlation, and we quantify the achievable
diversity order and coding gain as a function of the propa-
gation parameters. Sec. 4 contains simulation results, and
Sec. 5 presents our conclusions.

II. CHANNEL MODEL AND
SPACE-FREQUENCY CODING

In this section, we shall first introduce a broadband
MIMO channel model taking into account transmit and re-
ceive antenna correlation, and then briefly review space-
frequency coded OFDM.

II-A. The Channel Model

Our channel model is a simple extension of the model
proposed in [6] to account for transmit correlation as well.
In the following MT and MR denote the number of transmit
and receive antennas, respectively. We assume that the
MR × MT matrix-valued channel impulse response consists
of L taps with transfer function given by

H(ej2πθ) =
L−1

l=0

Hl e−j2πlθ, 0 ≤ θ < 1, (1)

where the MR × MT random matrix Hl represents the l-th
tap. The entries of Hl (l = 0, 1, ..., L − 1) are assumed cir-
cularly symmetric zero-mean complex Gaussian1 (Rayleigh
fading assumption). One can think of each of the taps as
representing a significant scatterer cluster [6] with each of
the paths emanating from within the same scatterer clus-
ter experiencing the same delay. Each scatterer cluster has
a mean angle of departure from the transmit array and a
mean angle of arrival at the receive array denoted as θ̄T,l

and θ̄R,l, respectively, a cluster angle spread as seen by the
transmitter δT,l (proportional to the scattering radius of the
cluster as observed by the transmitter), and a cluster an-
gle spread as seen by the receiver δR,l (proportional to the
scattering radius of the cluster as observed by the receiver).
We refer to the spread of the θ̄l as the total angle spread.
Different scatterer clusters are assumed uncorrelated. Spa-
tial fading correlation can occur both at the transmitter
and the receiver and is modeled by decomposing the l-th
tap according to

Hl = R1/2
l Hw,lS

1/2
l , l = 0, 1, ..., L − 1,

where Rl = R1/2
l R1/2

l and Sl = S1/2
l S1/2

l are the receive
and transmit correlation matrices, respectively, and the

1A circularly symmetric complex Gaussian random variable is a random
variable z = (x + jy) ∼ CN (0, σ2), where x and y are i.i.d. N (0, σ2/2).



Hw,l are MR × MT matrices with i.i.d. CN (0, σ2
l ) entries.

Note that the power delay profile σ2
l has been incorporated

into the matrices Hw,l. We assume uniform linear arrays
at both the transmitter and the receiver. The relative an-
tenna spacing is denoted as ∆T = dT

λ at the transmitter

and ∆R = dR
λ at the receiver, where dT and dR stand for

absolute antenna spacing at transmitter and receiver, re-
spectively, and λ = c/fc is the wavelength of a narrowband
signal with center frequency fc.

Defining ρ(s∆, θ̄, δ) to be the fading correlation between
two antenna elements spaced s∆ wavelengths apart, the
correlation matrices Rl and Sl are given by

[Rl]m,n = ρ((n − m)∆R, θ̄R,l, δR,l) (2)

[Sl]m,n = ρ((m − n)∆T , θ̄T,l, δT,l). (3)
Assuming that for each scatterer cluster the angle of depar-
ture and the angle of arrival is Gaussian distributed around
the mean angle of departure θ̄T,l and the mean angle of ar-
rival θ̄R,l, respectively, we get the following approximation
valid for small angular spread [9]

ρ(s∆, θ̄l, δl) ≈ e−j2πs∆ cos(θ̄l)e−
1
2 (2πs∆ sin(θ̄l)σθl

)2 (4)

with the variances σ2
θT,l

and σ2
θR,l

proportional to the an-
gular spreads δT,l and δR,l, respectively. We note that al-
though the approximation (4) is accurate only for small
angular spread, it does provide the correct trend for large
angular spread, namely uncorrelated spatial fading.

II-B. Space-Frequency Coding

In a MIMO-OFDM system with N tones the frequency-
selective fading channel decouples into N flat-fading chan-
nels with input-output relations

rk =
√

Es H(ej 2π
N k) ck + nk, k = 0, 1, ..., N − 1, (5)

where ck = [c(0)
k c(1)

k ... c(MT −1)
k ]T with c(i)

k denoting the
data symbol transmitted from the i-th antenna on the k-
th tone, and nk is complex-valued additive white Gaussian
noise satisfying

E{nkn
H
l } = σ2

nIMRδ[k − l] (6)

with IMR denoting the identity matrix of size MR. The

data symbols c(i)
k are taken from a finite complex alphabet

chosen such that the average energy of the constellation
elements is 1, and Es is an energy normalization factor.

The bit stream to be transmitted is encoded by the space-
frequency encoder into blocks of size MT × N . The channel
is assumed to be constant over at least one OFDM symbol.
Assuming perfect channel state information, the maximum
likelihood (ML) decoder computes C = [ĉ0 ĉ1 ... ĉN−1]
according to

C = arg min
C

N−1

k=0

‖rk −
√

EsH(ej 2π
N k) ck‖2,

where C = [c0 c1 ... cN−1] and the minimization is over
all possible codeword matrices. Throughout the paper, we
assume that the receiver has perfect channel state informa-
tion.

III. ERROR RATE PERFORMANCE OF
SPACE-FREQUENCY CODES

In this section, extending the results in [7], we shall first
derive the average (with respect to the random channel)
pairwise error probability for space-frequency codes taking
into account the channel model introduced in the previous
section. We shall then quantify the maximum achievable

diversity order and coding gain for various propagation sce-
narios.

Let C = [c0 c1 ... cN−1] and E = [e0 e1 ... eN−1] be
two different space-frequency codewords of size MT × N .
The average (with respect to the random channel) proba-
bility that the receiver decides erroneously in favor of the
signal E assuming that C was transmitted can be upper-
bounded as2

P (C → E) ≤
r(A(C,E))−1

i=0

1 + λi(A(C,E))
Es

4σ2
n

−1

,

(7)
where3

A(C,E) =
L−1

l=0

σ2
l Dl(C − E)T ST

l (C − E)∗D−l ⊗ Rl

(8)

with D = diag{e−j 2π
N k}N−1

k=0 , and A ⊗ B denotes the Kro-
necker product of the matrices A and B.

Receive correlation only. In this case Sl = IMT for
l = 0, 1, ..., L − 1 and (8) reduces to

A(C,E) =
L−1

l=0

σ2
l Dl(C − E)T (C − E)∗D−l ⊗ Rl.

In [10] it is shown that in the presence of receive correlation
only, the PEP upper bound can be expressed as

P (C → E) ≤
r(Au(C,E))MR−1

i=0

1

1 + Es
4σ2

n
θiλi(Au(C,E) ⊗ IMR)

,

(9)
where Rl = UlΣlU

H
l , Σ̄ = diag{Σl}L−1

l=0 , λmin(Σ̄) ≤ θi ≤
λmax(Σ̄),

Au(C,E) =
L−1

l=0

σ2
l [Dl(C − E)T (C − E)∗D−l], (10)

and λi(Au(C,E) ⊗ IMR) stands for the nonzero eigenvalues
of Au(C,E) ⊗ IMR . Using a standard result on Kronecker
products [11], it follows furthermore that every eigenvalue
λi(Au(C,E)) is an eigenvalue of Au(C,E)⊗ IMR with mul-
tiplicity MR.

The results found thus far have a number of important
implications which we shall discuss in the following. Assum-
ing that all the correlation matrices Rl (l = 0, 1, ..., L − 1)
have full rank and using (9) we get the following high SNR

Es
4σ2

n
) 1 PEP upper bound

P (C → E) ≤ Es

4σ2
n

−r(Au(C,E))MR r(Au(C,E))MR−1

i=0

θ−1
i

r(Au(C,E))−1

i=0

λi(Au(C,E))−MR .

Note that θi > 0 for i = 0, 1, ..., r(Au(C,E))MR − 1 since
we assumed that all the Rl are full rank. Since the diver-
sity order achieved by a space-frequency code in the i.i.d.
case is given by MR min{C,E}r(Au(C,E)) where the mini-
mum is taken over all codeword matrix pairs {C,E}, we can
conclude that the diversity order achieved in the presence
of receive correlation only with all correlation matrices full
rank is equal to the diversity order achieved by the code in

2r(A) stands for the rank of the matrix A.
3The superscript ∗ stands for elementwise conjugation.



the i.i.d. case. The coding gain in the presence of receive
correlation only is given by the coding gain of the space-
frequency code achieved in the i.i.d. case multiplied by the
factor r(Au(C,E))MR−1

i=0 θ−1
i .

Retaining the assumption of all the Rl being full rank,
let us next assume that the space-frequency code was
designed to achieve full space-frequency diversity, i.e.,
r(Au(C,E)) = MT L for all pairs of codeword matrices
{C,E}. In this case, in the high SNR regime [10]

P (C → E) ≤ Es

4σ2
n

−MT MRL L−1

i=0

det(Ri)
−MT

MT L−1

i=0

λi(Au(C,E))−MR .

We thus conclude that the diversity order achieved by the
space-frequency code in the presence of receive correlation
only is MT MRL, i.e., the code achieves full space-frequency
diversity. The coding gain is given by the coding gain
achieved in the i.i.d. case multiplied by L−1

i=0 det(Ri)
−MT ,

which is upper-bounded by 1 assuming that the correlation
matrices Rl are normalized according to4 Tr(Σ̄) = MRL.
The upper bound is achieved (i.e. no performance loss) if
Rl = IMR for l = 0, 1, ..., L−1 or equivalently if spatial fad-
ing is uncorrelated. The presence of receive correlation thus
always leads to a performance loss with the loss in coding
gain quantified by L−1

i=0 det(Ri)
−MT . We emphasize that

this loss is independent of the particular space-frequency
code employed.

Transmit correlation only. In the case of transmit
correlation only, Rl = IMR for l = 0, 1, ..., L − 1, and (8)
reduces to

A(C,E) =
L−1

l=0

σ2
l Dl(C −E)T ST

l (C− E)∗D−l

Atc(C,E)

⊗ IMR .

Denoting α = r (Atc(C,E)), we get a high-SNR PEP upper
bound as

P (C → E) ≤ Es

4σ2
n

−αMR α−1

i=0

λi(Atc(C,E))−MR .

(11)
In [10] the dependence of the average PEP on the eigen-
values of Sl is made explicit, assuming that all Sl are full
rank. Denoting s as the minimum rank of Au(C,E) over
all pairs of codeword matrices {C,E} (i.e. s is the diversity
gain achieved in the i.i.d. case) and focusing on a minimum
rank codeword pair, we get

P (C → E) ≤ Es

4σ2
n

−s MR s−1

i=0

(θiλi(Au(C,E)))−MR ,

where λi(Au(C,E)) denotes the nonzero eigenvalues of
Au(C,E), λmin(S̄) ≤ θi ≤ λmax(S̄) with S̄ =
diag{Sl}L−1

l=0 , and we have used the fact that α = s for
nonsingular S̄. For general S̄ the achievable diversity order
is given by

d = α MR. (12)

Using basic results on the rank of matrix products, we get
[12]

s + r(S̄) − MT L ≤ α ≤ min{s, r(S̄)}. (13)

4Tr(A) stands for the trace of the matrix A.

For full rank transmit correlation matrices Sl, i.e., r(S̄) =
MT L, we get d = sMR. For a space-frequency code achiev-
ing full diversity gain in the i.i.d. case, s = MT L and hence
d = r(S̄)MR. In the latter case, if the rank of S̄ is reduced
by 1, we lose MR degrees of freedom. We note that (13)
shows that if S̄ is singular and the space-frequency code
does not achieve full diversity gain in the i.i.d. case, i.e.,
s < MT L, the diversity order can only be lower-bounded
by (s + r(S̄)−MT L)MR. In this case it is difficult to make
statements on the exact diversity order since the geometry
of S̄ and the geometry of the space-frequency code, i.e., the
geometry of the code difference matrices play an important
role in assessing the exact diversity order. Loosely speak-
ing, in this case it is important that the space-frequency
code excites the range space of S̄ in order to obtain good
performance in terms of error rate. We conclude by not-
ing that as opposed to the case of receive correlation only,
where the performance loss due to spatial fading correla-
tion is independent of the space-frequency code employed,
in the presence of transmit correlation this loss in general
depends significantly on the specific space-frequency code
used. In the next section this observation will be corrobo-
rated through simulation results.

IV. SIMULATION RESULTS

Unless specified otherwise, we simulated a MIMO-OFDM
system with MT = MR = 2, L = 2, ∆T = ∆R = 1, and
σ2

0 = σ2
1 = 1/2. The signal-to-noise ratio (SNR) is defined

as SNR = 10 log10
2Es
σ2

n
. In all simulations ML decoding

was used. We employed the space-frequency coding scheme
proposed in [13] where an arbitrary (inner) space-frequency
code is used to transmit data in the first N

2 tones followed
by a repetition of this block. This construction ensures
that the additionally available frequency diversity is fully
exploited.
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Fig. 1. Impact of total transmit angle spread on
performance of space-frequency codes.

Simulation 1. In this simulation example, we study
the impact of total transmit angle spread ∆θ̄ = θ̄1 − θ̄0
in the presence of high transmit correlation (i.e. small
transmit antenna spacing) on the performance of space-
frequency codes. As inner codes we used QPSK-based
spatial multiplexing [14], [15] (which amounts to trans-
mitting independent data symbols on each tone and each
antenna) and the Alamouti scheme [3] based on QPSK.



The transmit cluster angle spreads satisfy σθ0 = σθ1 =
0 so that Sl = a(θ̄l)a

H(θ̄l) (l = 0, 1) with a(θ) =

1 e−j2π∆ cos(θ) ... e−j2π(MT −1)∆ cos(θ)
T
. The top dia-

gram in Fig. 1 shows the block error rate as a function of
∆θ̄ for spatial multiplexing at an SNR of 14dB and for the
Alamouti scheme at an SNR of 7dB, respectively. We can
clearly see that spatial multiplexing is very sensitive to total
transmit angle spread and that the performance improves
significantly for the case where the array response vectors
of the two taps a(θ̄0) and a(θ̄1) are close to orthogonal to
each other. The bottom diagram in Fig. 1 displaying the
condition number of the 2× 2 matrix B = [a(θ̄0) a(θ̄1)] cor-
roborates this statement. The lower rate Alamouti scheme
is virtually unaffected by the total transmit angle spread,
which can be explained as follows. The Alamouti scheme
orthogonalizes the channel irrespectively of the channel re-
alization; its performance is therefore independent of the
rank properties of the channel. For spatial multiplexing the
situation is different since the performance depends signifi-
cantly on the rank of the channel realizations. To be more
specific we note the following. Each transmit correlation
matrix Sl spans a one-dimensional subspace. The angle be-
tween these one-dimensional subspaces varies with varying
total angle spread. If the total angle spread is small, the two
subspaces tend to be aligned so that certain transmit signal
vectors which happen to lie in the orthogonal complement
of this subspace will result in high error probability. If the
total angle spread is large, the Sl tend to span different sub-
spaces and hence if a transmit vector excites the null-space
of S0 it will lie in the range space of S1 and vice versa.
This leads to good PEP performance as none of the trans-
mit vectors will be attenuated by the channel (on average
where the average is with respect to the random channel).
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Fig. 2. Impact of varying transmit antenna correlation on
performance of space-frequency codes.

Simulation Example 2. This example compares
the performance of orthogonal and nonorthogonal space-
frequency codes in the presence of transmit correlation. In
Sec. 3, we concluded that the impact of transmit antenna
correlation is highly dependent on how the code excites the
channel (i.e. the code geometry). Given that the transmit-
ter does not know the channel, an orthogonal scheme such
as the Alamouti scheme, which excites all spatial directions
uniformly, should exhibit maximum robustness with respect
to this kind of channel impairment. Nonorthogonal schemes
such as spatial multiplexing do not excite all spatial direc-
tions uniformly and hence suffer from widely varying per-
formance loss in the presence of transmit correlation. In
order to demonstrate this effect, we compared a 16-QAM
based Alamouti scheme as a simple orthogonal inner code to

spatial multiplexing based on QPSK (nonorthogonal inner
code). The total angle spread was set to 0, i.e., θ̄0 = θ̄1. The
SNR was kept constant at 12 dB while the absolute value
of the transmit antenna correlation coefficient was varied
from 0 to 1. Fig. 2 shows the bit error rates assuming Gray
encoding. It is clearly seen that whilst with uncorrelated
transmit antennas the Alamouti scheme performs inferior
compared to spatial multiplexing, performance degradation
with increasing correlation is much worse for spatial multi-
plexing such that at full correlation the Alamouti scheme
performs significantly better.

These performance differences along with the results of
Simulation Example 1 lead us to the conclusion that space-
frequency block codes exhibit superior robustness with re-
spect to varying propagation conditions when compared to
high-rate schemes such as spatial multiplexing.

V. CONCLUSION

We studied the impact of the propagation environment
on the performance of space-frequency coded broadband
OFDM systems. In particular, we derived the error-rate
performance of space-frequency codes in the presence of
transmit and receive correlation, and we quantified the
maximum achievable diversity order and coding gain as a
function of the propagation parameters. We found that
space-frequency block codes such as the Alamouti scheme
exhibit superior robustness with respect to varying propa-
gation conditions when compared to high-rate schemes such
as spatial multiplexing. Finally, we provided simulation re-
sults.
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