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Abstract. Covering numbers of families of (deep) ReLU networks have been used to
characterize their approximation-theoretic performance, upper-bound the prediction
error they incur in nonparametric regression, and quantify their classification capac-
ity. These results are based on covering number upper bounds obtained through the
explicit construction of coverings. Lower bounds on covering numbers do not seem to
be available in the literature. The present paper fills this gap by deriving tight (up to
a multiplicative constant) lower and upper bounds on the covering numbers of fully-
connected networks with bounded weights, sparse networks with bounded weights,
and fully-connected networks with quantized weights. Thanks to the tightness of
the bounds, a fundamental understanding of the impact of sparsity, quantization,
bounded vs. unbounded weights, and network output truncation can be developed.
Furthermore, the bounds allow to characterize the fundamental limits of neural net-
work transformation, including network compression, and lead to sharp upper bounds
on the prediction error in nonparametric regression through deep networks. Specif-
ically, we can remove a log6(n)-factor in the best known sample complexity rate in
the estimation of Lipschitz functions through deep networks thereby establishing op-
timality. Finally, we identify a systematic relation between optimal nonparametric
regression and optimal approximation through deep networks, unifying numerous re-
sults in the literature and uncovering general underlying principles.
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1 Introduction
It is well known that neural networks exhibit universal approximation properties [1, 2,

3, 4], but these results typically require infinitely large, specifically infinitely wide, networks.
Neural networks employed in practice are, however, subject to constraints on width, depth,
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weight magnitude and precision, and connectivity (i.e., the number of nonzero weights). To
characterize the performance limits of neural networks under such constraints, it is necessary to
quantify the complexity of the function classes they realize. This is typically done through two
widely used complexity notions, namely Vapnik-Chervonenkis (VC) dimension [5] and covering
numbers [6].

The VC dimension finds application in the characterization of (i) the approximation-theoretic
limits of neural networks with the ReLU activation function, see e.g. [7], hereafter referred to
as ReLU networks, and (ii) the prediction error incurred in nonparametric regression through
ReLU networks, see e.g. [8]. Nearly-tight bounds on the VC dimension of ReLU networks were
reported in [9], specifically upper and lower bounds differing only by a multiplicative factor of
order lower than that of the upper and the lower bound.

Covering numbers have been used to characterize the approximation-theoretic limits of
ReLU networks [10, 11, 12], upper-bound the prediction error they incur in nonparametric re-
gression [13, 14], and quantify their classification capacity [15, 16, 17]. These analyses typically
construct coverings by quantizing the network weights to a precision commensurate with the
desired covering ball radius. The cardinality of the resulting coverings then provides upper
bounds on the covering number. Corresponding explicit lower bounds are, to the best of our
knowledge, not available in the literature.

The contributions of the present paper can be organized along three main threads. The
first one revolves around explicit lower bounds on the covering number of fully-connected ReLU
networks with uniformly bounded weights. In particular, these bounds are shown, by way of
establishing matching upper bounds, to be tight in terms of scaling behavior. The techniques
we devise to derive the bounds are novel and partly rely on results recently reported by the
authors of the present paper in [18].

The second thread of contributions illustrates, by way of application scenarios, what is made
possible by the tightness of the covering number bounds identified before. The first scenario
is concerned with the fundamental limits of neural network transformation, concretely, the ap-
proximation of a given class of networks by another class that is subject to different constraints.
This includes applications such as network quantization [19] and network compression [20]. In
the second scenario, we consider the fundamental limits of function approximation through
ReLU networks. A novel minimax error upper bound, interesting in its own right, is shown
to lead to sharp upper bounds on the prediction error in nonparametric regression through
ReLU networks. This result also allows us to uncover a systematic relation between optimal
nonparametric regression and optimal approximation through (deep) ReLU networks thereby
unifying numerous corresponding results in the literature [13, 14, 21] and identifying general
underlying principles. In all cases considered, we either improve upon best known results in
the literature or fill gaps in available theories.

Our third objective is to establish tight covering number bounds for sparse (in terms of
connectivity) networks with bounded weights and for fully-connected networks with quantized
weights. We also provide an upper bound on the covering number of fully-connected networks
with unbounded weights and truncated outputs. These three choices are motivated by their
prevalence in theoretical analyses and practical applications, see e.g. [10, 13, 14, 20, 21, 22, 23,
24, 25].

The remainder of the paper is organized as follows. Frequently used definitions are provided
at the end of this section, while basic notation and further definitions are listed in Appendix A.
In Section 2, we present our results on the covering number of fully-connected ReLU networks
with uniformly bounded weights. Sections 3 and 4 discuss the application of our covering
number bounds to neural network transformation, function approximation, and nonparametric
regression. Sections 5-7 report the covering number bounds for sparse networks with uni-
formly bounded weights, fully-connected networks with quantized weights, and fully-connected
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networks with truncated outputs, respectively.

1.1 Important Definitions
We start with the definition of ReLU networks.

Definition 1.1. Let L,N0, N1, . . . , NL ∈ N. A network configuration Φ is a sequence of matrix-
vector tuples

Φ = ((Ai, bi))
L
i=1,

with Ai ∈ RNi×Ni−1, bi ∈ RNi, i = 1, . . . , L. We refer to Ni as the width of the i-th layer,
i = 0, . . . , L, and call the tuple (N0, . . . , NL) the architecture of the network configuration.
N (d) denotes the set of all network configurations with input dimension N0 = d and output
dimension NL = 1. The depth of the configuration Φ is L(Φ) := L, its width W(Φ) :=
maxi=0,...,L Ni, its weight set coef(Φ) :=

⋃
i=1,...,L(coef(Ai)

⋃
coef(bi)), with coef(A) and coef(b)

denoting the value set of the entries of A and b, respectively, its weight magnitude B(Φ) :=
maxi=1,...,L max{‖Ai‖∞, ‖bi‖∞}, and its connectivity M(Φ) :=

∑L
ℓ=1(‖Aℓ‖0 + ‖bℓ‖0).

We define, recursively, the network realization R(Φ) : RN0 7→ RNL, associated with the
network configuration Φ, according to

R(Φ) =

{
S(AL, bL), if L = 1,

S(AL, bL) ◦ ρ ◦R(((Ai, bi))
L−1
i=1 ), if L ≥ 2,

(1)

where S(A, b) is the affine mapping S(A, b)(x) = Ax + b, x ∈ Rn2, with A ∈ Rn1×n2, b ∈ Rn1,
and ρ(x) := max{x, 0}, for x ∈ R, is the ReLU activation function, which, when applied to
vectors, acts elementwise.

The family of network configurations with depth at most L, width at most W , weight magni-
tude at most B, where B ∈ R+ ∪ {∞}, connectivity at most s, weights taking values in A ⊆ R,
d-dimensional input, and 1-dimensional output, for d ∈ N, W,L, s ∈ N ∪ {∞}, with1 W ≥ d,
is denoted as

NA(d,W,L,B, s) = {Φ ∈ N (d) : W(Φ) ≤ W, L(Φ) ≤ L, B(Φ) ≤ B,M(Φ) ≤ s, coef(Φ) ⊆ A},

with the family of associated network realizations

RA(d,W,L,B, s) := {R(Φ) : Φ ∈ NA(d,W,L,B, s)}. (2)

To simplify notation, for A = R, we allow omission of the argument A in NA(d,W,L,B, s)
and RA(d,W,L,B, s). When s = ∞, we allow omission of the argument s in NA(d,W,L,B, s)
and RA(d,W,L,B, s). Furthermore, we allow omission of both arguments B, s in NA(d,W,L,B, s)
and RA(d,W,L,B, s) when B = s = ∞. One specific, frequently used, incarnation of these
policies is N (d,W,L) = NR(d,W,L,∞,∞) and R(d,W,L) = RR(d,W,L,∞,∞).

We emphasize the importance of differentiating between network configurations and network
realizations. Different network configurations may result in the same realization. Nevertheless,
whenever there is no potential for confusion, we shall use the term network to collectively refer
to both configurations and realizations.

Throughout the paper, we shall frequently use the covering number and the packing number,
defined as follows.

1The condition W ≥ d is formally stated here so as to prevent the trivial case of NA(d,W,L,B, s) being an
empty set. It will be a standing assumption throughout the paper.
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Definition 1.2 (Covering number and packing number). [6, Definitions 5.1 and 5.4] Let (Y , δ)
be a metric space. An ε-covering of X ⊆ Y is a subset {x1, . . . , xn} of X such that for all x ∈ X ,
there exists an i ∈ {1, . . . , n} so that δ(x, xi) ≤ ε. The ε-covering number N(ε,X , δ) is the
cardinality of a smallest ε-covering of X . An ε-packing of X is a subset {x1, . . . , xn} of X such
that δ(xi, xj) > ε, for all i, j ∈ {1, . . . , n} with i 6= j. The ε-packing number M(ε,X , δ) is the
cardinality of a largest ε-packing of X .

To simplify notation, when δ is the Lp(X)-norm, with X ⊆ Rd and p ∈ [1,∞], we may write
N(ε,F , Lp(X)) := N(ε,F , ‖ · ‖Lp(X)). Moreover, we shall use N(ε,F , L2(P )) := N(ε,F , ‖ ·
‖L2(P )), for P a distribution on X. The same conventions apply to the packing number.

2 Fully-connected ReLU Networks with Uniformly
Bounded Weights

Our covering number bounds for fully-connected ReLU networks with uniformly bounded
weights are as follows.

Theorem 2.1. Let p ∈ [1,∞], d,W,L ∈ N, B, ε ∈ R+ with B ≥ 1 and ε ∈ (0, 1/2). We have

log(N(ε,R(d,W,L,B), Lp([0, 1]d))) ≤ CW 2L log

(
(W + 1)LBL

ε

)
, (3)

where C ∈ R+ is an absolute constant. Further, if, in addition, W,L ≥ 60, then

log(N(ε,R(d,W,L,B), Lp([0, 1]d))) ≥ cW 2L log

(
(W + 1)LBL

ε

)
, (4)

where c ∈ R+ is an absolute constant.

Proof. The proofs of the upper bound and the lower bound are provided in Sections 2.1 and
2.2, respectively.

We remark that, for W,L ≥ 60 and ε ∈ (0, 1/2), the upper bound (3) and the lower bound
(4) differ only by the multiplicative absolute constants C, c to be specified in the proof. These
constants as well as the condition W,L ≥ 60 are chosen for expositional convenience of the
proof; improvements are possible, but will not be pursued here.

The covering number upper bounds available in the literature apply to specific settings. For
example, [13, Lemma 5] addresses the case B = 1 and [14, Lemma 5.3] pertains to p = ∞,
while we consider the general case B ∈ [1,∞), p ∈ [1,∞]. We note that [13, Lemma 5] and [14,
Lemma 5.3] also apply to sparse ReLU networks with uniformly bounded weights as considered
in Section 5, again for B ∈ [1,∞), p ∈ [1,∞].

2.1 Proof of the Upper Bound in Theorem 2.1
The proof is effected by constructing an explicit ε-covering of R(d,W,L,B) with elements in

R[−B,B]∩2−bZ(d,W,L), where b ∈ N is a parameter suitably depending on ε. We start with three
technical lemmata, and then provide the proof of the upper bound at the end of the section.
The first lemma quantifies the distance between the realizations of two networks sharing the
same architecture.
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Lemma 2.2. [18, Lemma E.1] Let d,W,L, ℓ ∈ N with ℓ ≤ L, B ∈ R+ with B ≥ 1, and let

Φi = ((Ai
j, b

i
j))

ℓ
j=1 ∈ N (d,W,L,B), i = 1, 2,

have the same architecture. Then,

‖R(Φ1)−R(Φ2)‖L∞([0,1]d) ≤ L(W + 1)LBL−1‖Φ1 − Φ2‖, (5)

where
‖Φ1 − Φ2‖ := max

j=1,...,ℓ
max

{
‖A1

j − A2
j‖∞, ‖b1j − b2j‖∞

}
. (6)

Based on Lemma 2.2, we now construct the announced ε-covering of R(d,W,L,B).

Lemma 2.3. Let p ∈ [1,∞], d,W,L, b ∈ N, and B ∈ R+ with B ≥ 1. Then, the set
R[−B,B]∩2−bZ(d,W,L) is an (L(W + 1)LBL−12−b)-covering of R(d,W,L,B) with respect to the
Lp([0, 1]d)-norm.

Proof. Define the quantization mapping qb : [−B,B] 7→ [−B,B] ∩ 2−bZ as

qb(x) =

{
2−bb2bxc, for x ∈ [0, B],

2−bd2bxe, for x ∈ [−B, 0),

and note that |x − qb(x)| ≤ 2−b, for all x ∈ [−B,B]. When applied to matrices or vectors,
qb(·) acts elementwise. Now, arbitrarily fix R(Φ) ∈ R(d,W,L,B) with Φ = ((Aℓ, bℓ))

L̃
ℓ=1 ∈

N (d,W,L,B) and L̃ ≤ L, and quantize the weights of Φ according to

Qb(Φ) = ((qb(Aℓ), qb(bℓ)))
L̃
ℓ=1 ∈ N[−B,B]∩2−bZ(d,W,L,B).

We then have

‖Φ−Qb(Φ)‖ = max
ℓ=1,...,L̃

max
{
‖Aℓ − qb(Aℓ)‖∞, ‖bℓ − qb(bℓ)‖∞

}
≤ 2−b,

which, together with Lemma 2.2, yields

‖R(Φ)−R(Qb(Φ))‖L∞([0,1]d) ≤ L(W + 1)LBL−12−b. (7)

As

‖R(Φ)−R(Qb(Φ))‖Lp([0,1]d) ≤ sup
x∈[0,1]d

|R(Φ)(x)−R(Qb(Φ))(x)| = ‖R(Φ)−R(Qb(Φ))‖L∞([0,1]d),

(7) implies that
‖R(Φ)−R(Qb(Φ))‖Lp([0,1]d) ≤ L(W + 1)LBL−12−b. (8)

We can therefore conclude that R[−B,B]∩2−bZ(d,W,L) is an (L(W + 1)LBL−12−b)-covering of
R(d,W,L,B) in the Lp([0, 1]d)-norm.

It remains to upper-bound the cardinality of the covering R[−B,B]∩2−bZ(d,W,L) identified
in Lemma 2.3. To this end, we first state an auxiliary result from [18].

Lemma 2.4. [18, Proposition 2.4] For d,W,L ∈ N and a finite set A ⊆ R with |A| ≥ 2, it
holds that

log(|RA(d,W,L)|) ≤ log(|NA(d,W,L)|) ≤ 5W 2L log(|A|). (9)
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We next make the choice of b explicit. Specifically, we set

b :=

⌈
log

(
L(W + 1)LBL−1

ε

)⌉
. (10)

Noting that L(W +1)LBL−12−b ≤ ε, it follows from Lemma 2.3 that R[−B,B]∩2−bZ(d,W,L) is an
ε-covering of R(d,W,L,B) with respect to the Lp([0, 1]d)-norm. By minimality of the covering
number, we have

N(ε,R(d,W,L,B), Lp([0, 1]d)) ≤ |R[−B,B]∩2−bZ(d,W,L)|. (11)

Application of Lemma 2.4 yields an upper bound on the cardinality of the covering according
to

log(|R[−B,B]∩2−bZ(d,W,L)|) ≤ 5W 2L log(|[−B,B] ∩ 2−bZ|). (12)

The term log(|[−B,B] ∩ 2−bZ|) can now be bounded as follows

log(|[−B,B] ∩ 2−bZ|) = log(|[−2bB, 2bB] ∩ Z|) (13)
≤ log(b2 · 2bB + 1c) (14)
≤ log(4 · 2bB) (15)

=2 +

⌈
log

(
L(W + 1)LBL−1

ε

)⌉
+ log(B) (16)

≤ 3 + log

(
L(W + 1)LBL−1

ε

)
+ log(B) (17)

≤ 3 log

(
L(W + 1)LBL

ε

)
, (18)

where (15) is by 1 ≤ 2 · 2bB and in (18) we used 3 ≤ 2 log
(L(W+1)LBL

ε

)
owing to ε ∈ (0, 1/2).

Putting (11)-(18) together, yields

log(N(ε,R(d,W,L,B), Lp([0, 1]d))) ≤ 15W 2L log

(
L(W + 1)LBL

ε

)
(19)

≤ 30W 2L log

(
(W + 1)LBL

ε

)
(20)

where (20) follows from L(W+1)LBL

ε
≤ (W+1)L·(W+1)LBL

ε
≤ ( (W+1)LBL

ε
)2. The proof is concluded

by taking C := 30.

2.2 Proof of the Lower Bound in Theorem 2.1
We again start with a series of technical results, which will then be synthesized to the

proof of the lower bound. The first of these results reduces the problem of lower-bounding the
covering number of R(d,W,L,B) with respect to the Lp([0, 1]d)-norm to that of lower-bounding
the packing number of R(1,W, L,B) with respect to the L1([0, 1])-norm.

Lemma 2.5. Let p ∈ [1,∞], d,W,L ∈ N, B, ε ∈ R+ with B ≥ 1 and ε ∈ (0, 1/2). We have

N(ε,R(d,W,L,B), Lp([0, 1]d)) ≥M(2ε,R(d,W,L,B), Lp([0, 1]d))) (21)
≥M(2ε,R(1,W, L,B), L1([0, 1]))). (22)
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Proof. The inequality (21) follows from Lemma F.1. To establish (22), we show that a maximal
(2ε)-packing of R(1,W, L,B) with respect to the L1([0, 1])-norm induces a (2ε)-packing of
R(d,W,L,B) with respect to the Lp([0, 1]d)-norm and of the same cardinality. The proof of
this statement is provided in Appendix B.2.

We shall next make use of the fact that ReLU networks can efficiently realize one-dimensional
bounded continuous piecewise linear functions, defined as follows.

Definition 2.6 (One-dimensional bounded continuous piecewise linear functions). [18, Defini-
tion B.2] Let M ∈ N, with M ≥ 3, E ∈ R+∪{∞}, and let X = (xi)

M−1
i=0 be a strictly increasing

sequence taking values in R. Define the set of functions

Σ(X,E) =
{
f ∈C(R) : ‖f‖L∞(R) ≤ E, f is constant on (−∞, x0] and [xM−1,∞),

f is affine on [xi, xi+1], i = 0, . . . ,M − 2
}
.

For a function f ∈ Σ(X,E), we call X the set of its breakpoints, as the slope of f can change
only at these points. We refer to the intervals (−∞, x0], [xi, xi+1], i = 0, . . . ,M − 2, [xM−1,∞)
as the piecewise linear regions of f .

We only need to consider breakpoint sets of the form

XN := (i/N)Ni=0, N ∈ N,

along with the associated function families Σ(XN , E), E ∈ R+, whose L1([0, 1])-covering num-
ber can be lower-bounded as follows.

Lemma 2.7. For N ∈ N, ε, E ∈ R+, we have

log(M(ε,Σ(XN , E), L1([0, 1]))) ≥ N log

(⌈
E

4εN

⌉)
, (23)

with XN = (i/N)Ni=0.

Proof. See Appendix B.3.

To realize functions in Σ(XN , E) efficiently by ReLU networks, we need two technical results
from [18], which we restate for convenience.

Lemma 2.8. [18, Proposition C.1] Let M ∈ N with M ≥ 3, E ∈ R+, and let X = (xi)
M−1
i=0 be

a strictly increasing sequence taking values in [0, 1]. Then, for all u, v ∈ N such that u2v ≥ M ,
we have

Σ(X,E) ⊆ R(1, 20u, 30v,max{1, CkM
6(Rm(X))4E}),

for an absolute constant Ck ∈ R satisfying 2 ≤ Ck ≤ 105, and where Rm(X) := maxi=1,...,M(xi−
xi−1)

−1.

The second result is as follows.

Lemma 2.9. [18, Proposition H.4] Let W1, L1 ∈ N, with W1 ≥ 2, L2 ∈ N ∪ {0}, and
B1, B2 ∈ R+, with B1, B2 ≥ 1. It holds that

(B2)
L1+L2bW1/2cL2

B1
L1

· R(1,W1, L1, B1) ⊆ R(1,W1, L1 + L2, B2). (24)
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We are now ready to prove the lower bound in Theorem 2.1 and start by noting that
thanks to Lemma 2.5, it suffices to lower-bound M(2ε,R(1,W, L,B), L1([0, 1])). We proceed
to identify the family of bounded continuous piecewise linear functions corresponding to the
set R(1,W, L,B). To this end, we first introduce notation, namely we set

u :=

⌊
W

20

⌋
, v :=

⌊
L

60

⌋
.

As W,L ≥ 60, we have u ≥ 3 and v ≥ 1. Application of Lemma 2.8 with M = u2v, X =
Xu2v−1 = ( i

u2v−1
)u

2v−1
i=0 , Rm(Xu2v−1) = u2v − 1, and E = 1

Ck(u2v)10
, with the absolute constant

Ck per Lemma 2.8, yields

Σ

(
Xu2v−1,

1

Ck(u2v)10

)
⊆ R(1, 20u, 30v, 1). (25)

Next, application of Lemma 2.9 with W1 = 20u ≥ 2, L1 = 30v, B1 = 1, L2 = 30v,
B2 = B ≥ 1, yields (B60v(10u)30v) · R(1, 20u, 30v, 1) ⊆ R(1, 20u, 60v,B), which together with
R(1, 20u, 60v,B) = R(1, 20bW

20
c, 60b L

60
c, B) ⊆ R(1,W, L,B) establishes that

(B60v(10u)30v) · R(1, 20u, 30v, 1) ⊆ R(1,W, L,B). (26)

Moreover, as a · Σ(Xu2v−1, b) = Σ(Xu2v−1, ab), for all a, b ∈ R+, we have

(B60v(10u)30v) · Σ
(
Xu2v−1,

1

Ck(u2v)10

)
= Σ

(
Xu2v−1,

(B60v(10u)30v)

Ck(u2v)10

)
. (27)

Combining (26), (27), and (25), then yields

Σ

(
Xu2v−1,

(B60v(10u)30v)

Ck(u2v)10

)
⊆ R(1,W, L,B). (28)

We have

log(M(2ε,R(1,W, L,B), L1([0, 1]))) (29)

≥ log

(
M

(
2ε,Σ

(
Xu2v−1,

B60v(10u)30v

Ck(u2v)10

)
, L1([0, 1])

))
(30)

≥ (u2v − 1) log

(⌈
B60v(10u)30v

Ck(u2v)10
· 1

4 · 2ε(u2v − 1)

⌉)
(31)

≥ (u2v − 1) log

(
B60v(100u2)v

ε
· 10

6

8Ck

)
(32)

≥ (u2v − 1) log

(
(100Bu)v

ε

)
(33)

where in (30) we used the inclusion relation (28) together with Lemma F.1, (31) is by Lemma 2.7,
(32) follows from (10u)30v ≥ 106 ·u22 · (2v)11 · (10u)2v ≥ 106 ·u22 ·v11 · (10u)2v ≥ 106(u2v)10(u2v−
1)(100u2)v, and in (33) we employed u ≥ 3, v ≥ 1, B ≥ 1, and 8Ck ≤ 8 · 105 < 106. We next
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lower-bound (u2v − 1) log( (100Bu)v

ε
) in terms of W,L,B according to

(u2v − 1) log

(
(100Bu)v

ε

)
≥ 1

2
u2v log

(
(100Bu)v

ε

)
(34)

≥ 1

2

(
W

40

)2
L

120
log

(
(100BW

40
)

L
120

ε

)
(35)

≥ 1

2 · 402 · 120
W 2L log

(
(BW )

L
120

ε
1

120

)
(36)

=
1

2 · 402 · 1202
W 2L log

(
WLBL

ε

)
. (37)

≥ 1

4 · 402 · 1202
W 2L log

(
(W + 1)LBL

ε

)
, (38)

where (34) follows from u2v − 1 ≥ u2v − 1
9
u2v ≥ 1

2
u2v as u ≥ 3 and v ≥ 1, in (35) we used

u = bW
20
c ≥ W

40
and v = b L

60
c ≥ L

120
, and (38) is by 2 log(W

LBL

ε
) = log(W

2LB2L

ε2
) ≥ log( (W+1)LBL

ε
)

as W ≥ 60 by assumption. The proof is concluded by setting c = 1
4·402·1202 .

3 Neural Network Transformation and Function Approx-
imation

We now show how the precise characterization of ReLU network covering numbers obtained
in the previous section can be put to work to characterize the fundamental limits of neural
network transformation and function approximation. Before describing the specifics of these
two problems, we need a general result which relates the covering numbers of sets G and F
that are close in terms of minimax distance

A(G,F , δ) = sup
g∈G

inf
f∈F

δ(f, g),

with respect to some metric δ.

Proposition 3.1. Let (X , δ) be a metric space, F ,G ⊆ X , and ε ∈ R+. Suppose that

A(G,F , δ) ≤ ε. (39)

Then,
N(ε,F , δ) ≥ N(4ε,G, δ). (40)

Proof. See Appendix B.1.

3.1 Neural Network Transformation
Generally speaking, neural network transformation is the practice of approximating or ex-

actly realizing a given neural network with certain structural properties by another neural
network satisfying different prescribed structural properties. This problem has a number of
concrete incarnations. For example, in network compression the objective is to reduce the size
of networks. In practice, this is often effected through techniques such as pruning [26, 27] or
knowledge distillation [28]. Another example is network quantization, where real-valued net-
work weights are replaced by weights that are quantized to a predetermined level of precision,
or high-precision weights are substituted by lower-precision weights. This can be done either

9



by rounding each individual weight to the nearest quantization point or by searching for the
best set of quantized weights jointly through specific algorithms [29]. The primary motivation
for network compression and quantization stems from the necessity to store neural networks on
microchips under prescribed memory constraints. Further examples of neural network trans-
formation appear in [30, Theorem 3.1] where a given network is transformed into one that is
narrower and deeper, and in [10, Lemma A.1], [13, Theorem 5], [30, Corollary 3.2] which all
employ transformations into networks of smaller weight magnitude.

More formally, the problem of neural network transformation can be cast as follows. Con-
sidering the classes of networks R1 and R2, one wants to approximate a given network r1 ∈ R1

by a network r2 ∈ R2 such that the distance δ(r1, r2), for some metric δ, is minimized. The fun-
damental limit on the worst-case error incurred by the transformation mapping C : R1 7→ R2,
under the metric δ, is characterized by the minimax approximation error A(R1,R2, δ) according
to

sup
r1∈R1

δ(r1,C(r1)) ≥ sup
r1∈R1

inf
r2∈R2

δ(r1, r2) = A(R1,R2, δ).

In [31, Theorem 1.1], for example, a lower bound on A(R1,R2, δ) was provided in terms
of the oscillation count of ReLU networks (as defined in [31, Sec. 3]), in the case where
deep networks are replaced by shallow ones. We next show how A(R1,R2, δ) can be char-
acterized for general R1 and R2 through covering numbers. For concreteness, we consider
R1 = R(d,W,L,B),R2 = R(d, W̃ , L̃, B̃) with δ = Lp([0, 1]d) for general p ∈ [1,∞].

Corollary 3.2. Let p ∈ [1,∞], d ∈ N, L, L̃,W, W̃ ∈ N, with W,L ≥ 60, B, B̃ ∈ R+, with
B, B̃ ≥ 1. Assume that there exists an ε ∈ (0, 1/8) such that

A(R(d,W,L,B),R(d, W̃ , L̃, B̃), ‖ · ‖Lp([0,1]d)) ≤ ε. (41)

Then,

cW 2L log

(
(W + 1)LBL

4ε

)
≤ C W̃ 2L̃ log

(
(W̃ + 1)L̃B̃L̃

ε

)
, (42)

where C and c are the absolute constants in Theorem 2.1 corresponding to the parameters
W̃ , L̃, B̃ and W,L,B, respectively. In particular, if R(d,W,L,B) ⊆ R(d, W̃ , L̃, B̃), we have

C W̃ 2L̃ ≥ cW 2L. (43)

Proof. Application of Proposition 3.1 with δ = ‖ · ‖Lp([0,1]d), G = R(d,W,L,B), and F =

R(d, W̃ , L̃, B̃), and the prerequisite (39) satisfied thanks to (41), yields

N(ε,R(d, W̃ , L̃, B̃), Lp([0, 1]d)) ≥ N(4ε,R(d,W,L,B), Lp([0, 1]d)),

which together with Theorem 2.1 establishes (42). If R(d,W,L,B) ⊆ R(d, W̃ , L̃, B̃), then (41)
holds for all ε ∈

(
0, 1

8

)
and consequently so does (42). Dividing (42) by log(1

ε
) and letting ε → 0

results in (43).

Corollary 3.2 allows us to answer the following question on network size reduction: Is it
possible to approximate a network in N (d,W,L,B) by one in N (d, W̃ , L̃, B̃), with prescribed
error ε, while having the maximum number of nonzero weights of the approximating network,
W̃ 2L̃, be of order smaller than that of the original network? When ε = 0, i.e., R(d,W,L,B) ⊆
R(d, W̃ , L̃, B̃), (43) shows that the answer is negative. For ε ∈ (0, 1/8), we can conclude from
(42) that this would require that the weight magnitude B̃ compensate for the reduction in an
exponential manner.

We next consider network transformation through weight quantization.
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Corollary 3.3. Let p ∈ [1,∞], d,W,L ∈ N, B ∈ R+, with B ≥ 1 and W,L ≥ 60. Let A ⊆ R
be a finite set such that |A| ≥ 2. Then, we have

A(R(d,W,L,B),RA(d,W,L), ‖ · ‖Lp([0,1]d)) ≥ min{1/8, (W + 1)LBL2−c log(|A|)}, (44)

for some absolute constant c ∈ R+.

Proof. Let
κ := A(R(d,W,L,B),RA(d,W,L), ‖ · ‖Lp([0,1]d)). (45)

When κ ≥ 1/8, the desired inequality (44) holds trivially. For κ < 1/8, it follows from
Proposition 3.1 with ε = κ, δ = ‖ · ‖Lp([0,1]d), G = R(d,W,L,B), and F = RA(d,W,L) that

N(κ,RA(d,W,L), Lp([0, 1]d)) ≥ N(4κ,R(d,W,L,B), Lp([0, 1]d)). (46)

We next note that

log(N(κ,RA(d,W,L), Lp([0, 1]d))) ≤ log(|RA(d,W,L)|) (47)
≤ 5W 2L log(|A|), (48)

where (47) follows from the fact that every set is a covering of itself and (48) is by Lemma 2.4.
Further, it follows from (4) in Theorem 2.1 with ε = 4κ, that

log(N(4κ,R(d,W,L,B), Lp([0, 1]d))) ≥ c1W
2L log

(
(W + 1)LBL

4κ

)
, (49)

with c1 ∈ R+ an absolute constant. Using (47)-(48) and (49) in (46), yields

5W 2L log(|A|) ≥ c1W
2L log

(
(W + 1)LBL

4κ

)
,

which implies κ ≥ 1
4
(W+1)LBL2

− 5
c1

log(|A|) ≥ (W+1)LBL2
−
(

5
c1

+2
)
log(|A|), thanks to log(|A|) ≥ 1.

The proof is concluded by setting c := 5
c1
+ 2.

Corollary 3.3 allows us to conclude that the worst-case quantization error A(R(d,W,L,B),
RA(d,W,L), ‖ · ‖Lp([0,1]d)) decreases no faster than exponential in the number of bits log(|A|)
required to store the elements of A. Moreover, as W,L, and B grow, the network weight
resolution has to increase in order to compensate for the growth in the factor (W + 1)LBL.
Specifically, if we require that A(R(d,W,L,B),RA(d,W,L), ‖ · ‖Lp([0,1]d)) ≤ κ, we must have
log(|A|) ≥ 1

c
log
( (W+1)LBL

κ

)
. This lower bound can be achieved, within a multiplicative constant,

by taking A to be an equidistant set contained in the interval [−B,B]. To see this, we set
A = [−B,B] ∩ 2−bZ with b = dlog(L(W+1)LBL−1

κ
)e and note that

A(R(d,W,L,B),R[−B,B]∩2−bZ(d,W,L), ‖ · ‖Lp([0,1]d)) (50)
≤ L(W + 1)LBL−12−b (51)
≤ κ, (52)

where in (51) we applied Lemma 2.3. The argument is concluded upon realizing that log(|A|) =
log(|[−B,B] ∩ 2−bZ|) ≤ 3 log(L(W+1)LBL

κ
) ≤ 6 log( (W+1)LBL

κ
), where the first inequality follows

from (13)-(18) and the second is by L(W+1)LBL

κ
≤ (W+1)L·(W+1)LBL

κ
≤ ( (W+1)LBL

κ
)2.

We finally emphasize that the results on the fundamental limits on neural network transfor-
mation presented in this section are made possible by the tight covering number lower bound
(4) in Theorem 2.1.
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3.2 Deep Neural Network Function Approximation
We next show how the covering number bounds in Theorem 2.1, in combination with Propo-

sition 3.1, can be used to establish a tight characterization of the minimax error in the ReLU
network approximation of the class of 1-Lipschitz functions

H1([0, 1]) := {f ∈ C([0, 1]) : |f(x)| ≤ 1, |f(x)− f(y)| ≤ |x− y|, ∀x, y ∈ [0, 1]}. (53)

To this end, we start with the following upper bound on the minimax error.

Lemma 3.4. There exist absolute constants C,D ∈ R+ such that, for all W,L ∈ N, with
W,L ≥ D, and p ∈ [1,∞],

A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖Lp([0,1])) ≤ C(W 2L2 log(W ))−1. (54)

Proof. By [18, Theorem 3.1], there exist absolute constants C,D ∈ R+ such that, for all
W,L ∈ N, with W,L ≥ D, A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖L∞([0,1])) ≤ C(W 2L2 log(W ))−1.
Noting that, for all p ∈ [1,∞], the Lp([0, 1])-norm is dominated by the L∞([0, 1])-norm, i.e.,
‖f‖Lp([0,1]) ≤ ‖f‖L∞([0,1]), ∀f ∈ L∞([0, 1]), we have, for all W,L ∈ N, with W,L ≥ D, and
p ∈ [1,∞], A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖Lp([0,1])) ≤ A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖L∞([0,1])) ≤
C(W 2L2 log(W ))−1.

A corresponding lower bound, for p = ∞ and L ≥ 2, obtained through arguments involving
VC dimension is given by [18, Proposition 2.11],

A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖L∞([0,1])) ≥ cv(W
2L2(log(W ) + log(L)))−1, (55)

where cv is an absolute constant. A comparison of the upper bound (54) and the lower bound
(55) reveals a gap owing to the additive term log(L) in the lower bound. The question is now
whether the lower or the upper bound would need to be refined to close this gap. The tight
covering number bounds in Theorem 2.1 allow to answer this question. Concretely, it turns out
that it is the lower bound that can be strengthened. The resulting improvement pertains to all
p ∈ [1,∞]. To see all this, we start with a lower bound on the covering number of H1([0, 1]).

Lemma 3.5. There exists an absolute constant C ∈ R+ such that, for all p ∈ [1,∞] and
ε ∈ (0, 1/2),

log(N(ε,H1([0, 1]), Lp([0, 1]))) ≥ Cε−1. (56)

For p = ∞, the statement of Lemma 3.5 is [6, Example 5.10]. An asymptotic version of
Lemma 3.5 was provided in [32, Theorem 1.7]. Inspection of the proof of [32, Theorem 1.7]
reveals quite directly that the result holds in nonasymptotic form as stated here and does so
even for a more general class of functions. The proof of Lemma 3.5 is hence omitted.

We are now ready to present the strengthened lower bound.

Corollary 3.6. Let p ∈ [1,∞], W,L ∈ N. It holds that

A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖Lp([0,1])) ≥ min

{
1

8
, c (W 2L2 log(W ))−1

}
, (57)

where c ∈ R+ is an absolute constant.

Proof. Let
κ := A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖Lp([0,1])). (58)
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When κ ≥ 1/8, the desired inequality (57) holds trivially. For κ < 1/8, it follows from
Proposition 3.1 with ε = κ, δ = ‖ · ‖Lp([0,1]), F = R(1,W, L, 1), and G = H1([0, 1]) that

N(κ,R(1,W, L, 1), Lp([0, 1])) ≥ N(4κ,H1([0, 1]), Lp([0, 1])). (59)

The left-hand-side of (59) can now be upper-bounded by (3) in Theorem 2.1 according to

log(N(κ,R(1,W, L, 1), Lp([0, 1]))) ≤ C1W
2L log

(
(W + 1)L

κ

)
, (60)

with C1 an absolute constant. Application of Lemma 3.5 with ε = 4κ, yields

log(N(4κ,H1([0, 1]), Lp([0, 1]))) ≥ C2κ
−1, (61)

with C2 an absolute constant. Using (60) and (61) in (59) leads to

C1W
2L2 log(W + 1) + C1W

2L log(κ−1)− C2κ
−1 ≥ 0. (62)

Next, we define f : R 7→ R as

f(x) = C1W
2L2 log(W + 1) + C1W

2L log(x)− C2x, (63)

which allows us to rewrite (62) as
f(κ−1) ≥ 0. (64)

We proceed to characterize the feasible set {x : f(x) ≥ 0} for κ−1. First, note that the set
{x ∈ [100,∞) : 2x − 2C1

C2
· (x+ 10) ≥ 0} is nonempty, and let ν := inf{x ∈ [100,∞) : 2x − 2C1

C2
·

(x+10) ≥ 0} ∈ [100,∞). Thanks to the continuity of the mapping x ∈ R 7→ 2x− 2C1

C2
· (x+10),

we have 2ν − 2C1

C2
· (ν + 10) ≥ 0. Moreover, ν depends on C1

C2
only. Let

b :=
2C1

C2

· (ν + 10).

Then, we have 2ν ≥ b, and

f

(
bW 2L2 log(W + 1)

)
(65)

= C1W
2L2 log(W + 1) + C1W

2L log(bW 2L2 log(W + 1))− C2 bW
2L2 log(W + 1) (66)

=

(
C1 −

C2b

2

)
W 2L2 log(W + 1)

+ C1W
2L

(
log(bW 2L2 log(W + 1))− C2b

2C1

L log(W + 1)

)
(67)

< C1W
2L

(
log

(
bW 2L2 log(W + 1)

)
− log

(
(W + 1)

C2b
2C1

L

))
(68)

≤ 0, (69)

where (68) follows from C1 − C2b
2

= C1 − C2

2
· 2C1

C2
· (ν + 10) < C1 − C2

2
· 2C1

C2
= 0, and in (69) we

used

(W + 1)
C2b
2C1

L
=(W + 1)

(
C2b
2C1

−10)L
(W + 1)10L (70)

≥ 2
C2b
2C1

−10
(W + 1)2 · ((W + 1)L)2 · (W + 1) (71)

≥ 2
C2b
2C1

−10
W 2L2 log(W + 1) (72)

=2νW 2L2 log(W + 1) (73)
≥ bW 2L2 log(W + 1). (74)
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We next note that f is strictly decreasing on [bW 2L2 log(W + 1),∞) as f ′(x) = C1W 2L
x ln(2)

−C2 ≤
C1W 2L

bW 2L2 log(W+1) ln(2)
−C2 ≤ C1

b ln(2)
−C2 =

C1
2C1
C2

·(ν+10) ln(2)
−C2 < 0, for all x ∈ [bW 2L2 log(W+1),∞).

It hence follows from (65)-(69) that f(x) < 0, for all x > bW 2L2 log(W + 1), and therefore

{x : f(x) ≥ 0} ⊆ (−∞, bW 2L2 log(W + 1)]. (75)

Putting (64) and (75) together, we obtain

κ−1 ≤ bW 2L2 log(W + 1), (76)

which, in turn, implies

κ ≥ b−1(W 2L2 log(W + 1))−1 ≥ min

{
1

8
, b−1(W 2L2 log(W + 1))−1

}
.

The proof is concluded by setting c = b−1.

4 Optimal Rates in Nonparametric Regression
In this section, we show how the minimax error upper bound in Lemma 3.4 leads to a sharp

characterization of the prediction error in nonparametric regression through ReLU networks.
The general results we obtain allow to infer, inter alia, that nonparametric regression with
very deep2 fully-connected ReLU networks achieves optimal sample complexity rate in the
estimation of 1-Lipschitz functions; this improves significantly upon [8, Theorem 1(b)] in the
special case of 1-Lipschitz functions by removing the (log(n))6-factor. The section concludes
with insights on a systematic relation between optimal nonparametric regression and optimal
approximation through (deep) ReLU networks unifying numerous corresponding results in the
literature [13, 14, 21] and identifying general underlying principles.

The goal of nonparametric regression is to estimate the unknown function g : X 7→ R, with
X ⊆ Rd, d ∈ N, referred to as the regression function, from the n ∈ N (random) samples

(xi, yi)
n
i=1 = (xi, g(xi) + σξi)

n
i=1, (77)

where σ ∈ R+, (xi)
n
i=1 are i.i.d. random variables of distribution P supported on X, (ξi)ni=1 are

i.i.d. standard (i.e., zero mean and unit variance) Gaussian random variables, and (xi)
n
i=1 and

(ξi)
n
i=1 are statistically independent.

4.1 Nonparametric Regression through ReLU Networks
Nonparametric regression through ReLU networks was considered in [8, 13, 14, 21], with g

estimated by fitting a network f̂n from a given class Fn of networks through minimization of
the empirical risk 1

n

∑n
i=1(f̂n(xi)− yi)

2. For example, [13] considers regression functions g that
can be written as the composition of bounded Hölder functions and Fn is a family of sparse
ReLU networks with bounded output. The quality of the estimator is generally measured by
the so-called prediction error

‖f̂n − g‖2L2(P ) =

∫
|f̂n(x)− g(x)|2 dP (x).

2Here, “very deep” refers to networks whose depth increases at least linearly in network width, which is in
contrast to networks commonly considered in the literature [10, 13, 14, 21] that have depth increasing at most
logarithmically in width.
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The references [8, 13, 14, 21] report upper bounds on the prediction error. Notably, the bounds
in [8] are derived employing arguments based on VC-dimension, while those in [13, 14, 21] are
obtained from covering number upper bounds for ReLU networks. The following Theorem 4.1
summarizes the results [13, Lemma 4], [14, Lemma 4 and Lemma 5] and reformulates them so
as to highlight the individual effects of the approximation error and the covering number of Fn.
Application of the minimax error upper bound in Lemma 3.4 then results in the removal of the
(log(n))6-factor in the special case of Lipschitz functions in [8, Theorem 1(b)]. Moreover, our
reformulation sets the stage for the development of a fundamental relation between optimal
approximation and optimal regression through ReLU networks provided at the end of this
section. We emphasize that most of the techniques and ideas used in the proof of Theorem 4.1
follow [13].

Theorem 4.1. Let X ⊆ Rd and consider the regression function g : X 7→ R. Let n ∈ N and σ ∈
R+. Let P be a distribution on X, with the associated samples (xi, yi)

n
i=1 = (xi, g(xi) + σξi)

n
i=1,

where (xi)
n
i=1 are i.i.d. random variables of distribution P , (ξi)ni=1 are i.i.d. standard Gaussian

random variables, and (xi)
n
i=1 and (ξi)

n
i=1 are statistically independent.

Let ε ∈ (0, 1/2), and consider a class of functions Fn ⊆ L∞(X) such that

inf
f∈Fn

‖g − f‖L2(P ) ≤ ε (78)

and an Fn-valued random variable f̂n satisfying

1

n

n∑
i=1

(f̂n(xi)− yi)
2 ≤ inf

f∈Fn

(
1

n

n∑
i=1

(f(xi)− yi)
2

)
+ ε2, a.s. (79)

It holds that

E(‖f̂n − g‖2L2(P )) ≤ C(1 + σ + σ2 + (R(g,Fn))
2)

(
ε2 +

log(N(ε2,Fn, L
∞(X))) + 1

n

)
, (80)

where C ∈ R+ is an absolute constant and R(g,Fn) := max{‖g‖L∞(X), supf∈Fn
‖f‖L∞(X)}.

Proof. See Appendix C.

The prediction error upper bound in Theorem 4.1 relies on two assumptions. The first
one is the approximation assumption (78), which states that the regression function g can be
approximated well by functions in Fn. The second is the empirical risk minimization assumption
(79), which requires f̂n, almost surely, to nearly achieve the minimal empirical risk among Fn.

We proceed to apply Theorem 4.1 to the estimation of 1-Lipschitz functions g ∈ H1([0, 1])
from the associated (random) samples (xi, g(xi)+σξi)

n
i=1 using nonparametric least squares with

very deep fully-connected ReLU networks of fixed width and output truncated to the interval
[−1, 1]. Formally, the truncation is effected by applying the operator TE : R 7→ [−E,E],
E ∈ R+,

TE(x) = max{−E,min{E, x}}, (81)
with E = 1 to the neural network output. This truncation is commonly adopted in the literature
[8, 13, 14, 21] and it is quite natural given that the regression function g to be estimated satisfies
‖g‖L∞([0,1]) ≤ 1. The formal result can now be stated as follows.

Corollary 4.2. Consider the regression function g ∈ H1([0, 1]). Let n ∈ N and σ ∈ R+.
Let P be a distribution on [0, 1], with the associated samples (xi, yi)

n
i=1 = (xi, g(xi) + σξi)

n
i=1,

where (xi)
n
i=1 are i.i.d. random variables of distribution P , (ξi)ni=1 are i.i.d. standard Gaussian

random variables, and (xi)
n
i=1 and (ξi)

n
i=1 are statistically independent.
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Let C and D be the constants specified in Lemma 3.4, and set

L(n) := d2(D + 1)(C + 1)1/2n1/6e, Fn := T1 ◦ R(1, dD + 1e, L(n), 1). (82)

Let f̂n be the empirical risk minimizer3 in Fn, i.e.,

1

n

n∑
i=1

(f̂n(xi)− yi)
2 = inf

f∈Fn

(
1

n

n∑
i=1

(f(xi)− yi)
2

)
, a.s. (83)

Then,
E(‖f̂n − g‖2L2(P )) ≤ K(σ)n−2/3, (84)

where K(σ) is a constant depending on σ only.

Proof. We apply Theorem 4.1 with X = [0, 1] and choose ε ∈ (0, 1/2) such that the prerequisites
(78) and (79) are satisfied. To this end, we first apply Lemma 3.4 with W = dD + 1e ≥ D,
L = L(n) = d2(D + 1)(C + 1)1/2n1/6e ≥ D, and p = ∞ to obtain

A(H1([0, 1]),R(1, dD + 1e, L(n), 1), ‖ · ‖L∞([0,1])) ≤C(dD + 1e2(L(n))2 log(dD + 1e))−1

≤C(L(n))−2

=C(d2(D + 1)(C + 1)1/2n1/6e)−2

≤ 1

4
n−1/3.

(85)

It then follows that

inf
f∈Fn

‖f − g‖L2(P ) = inf
f∈R(1,⌈D+1⌉,L(n),1)

‖T1 ◦ f − g‖L2(P ) (86)

≤ inf
f∈R(1,⌈D+1⌉,L(n),1)

‖T1 ◦ f − g‖L∞([0,1]) (87)

= inf
f∈R(1,⌈D+1⌉,L(n),1)

‖T1 ◦ f − T1 ◦ g‖L∞([0,1]) (88)

≤ inf
f∈R(1,⌈D+1⌉,L(n),1)

‖f − g‖L∞([0,1]) (89)

≤A(H1([0, 1]),R(1, dD + 1e, L(n), 1), ‖ · ‖L∞([0,1])) (90)

≤ 1

4
n−1/3, (91)

where in (87) we used that P is a distribution on [0, 1], (88) follows from the fact that g ∈
H1([0, 1]) takes values in [−1, 1], (89) is a consequence of T1 being 1-Lipschitz, and in (91) we
employed (85). We have therefore verified (78) with

ε :=
1

4
n−1/3.

Prerequisite (79) holds with the same ε = 1
4
n−1/3 owing to assumption (83). We are now in a

position to apply Theorem 4.1 resulting in

E(‖f̂n − g‖2L2(P )) ≤C1(1 + σ + σ2 + (R(g,Fn))
2)

(
ε2 +

log(N(ε2,Fn, L
∞([0, 1]))) + 1

n

)
(92)

≤C1(2 + σ + σ2)

(
1

16
n−2/3 +

log(N( 1
16
n−2/3,Fn, L

∞([0, 1]))) + 1

n

)
, (93)

3The existence of the minimizer is argued in Section F.3. For simplicity of exposition, we assume that the
minimizer can be identified exactly, thereby ignoring the impact of suboptimality of the optimization algorithm
employed. This simplification is common in the literature, see e.g. [8, 21]. We note, however, that Theorem 4.1
can accommodate cases where minimization is accomplished only approximately.
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where C1 is the absolute constant C from Theorem 4.1, and in (93) we used R(g,Fn) ≤ 1 which
follows from g ∈ H1([0, 1]) and the fact that Fn consists of functions that take values in [−1, 1].

We next upper-bound the term log(N( 1
16
n−2/3,Fn, L

∞([0, 1]))). As Fn = T1 ◦ R(1, dD +
1e, L(n), 1) and T1 is 1-Lipschitz, every ε-covering {xi}Ni=1 of R(1, dD+1e, L(n), 1) with respect
to the L∞([0, 1])-norm induces an ε-covering {T1 ◦ xi}Ni=1 of Fn with respect to the L∞([0, 1])-
norm. It therefore holds that

N

(
1

16
n−2/3,Fn, L

∞([0, 1])

)
≤ N

(
1

16
n−2/3,R(1, dD + 1e, L(n), 1), L∞([0, 1])

)
. (94)

The right-hand-side of (94) can now be upper-bounded according to

log

(
N

(
1

16
n−2/3,R(1, dD + 1e, L(n), 1), L∞([0, 1])

))
(95)

≤ C2dD + 1e2L(n) log
(
(dD + 1e+ 1)L(n)

1
16
n−2/3

)
(96)

= C2dD + 1e2L(n)
(
L(n) log(dD + 1e+ 1) + log(16n2/3)

)
(97)

≤ C2dD + 1e2L(n)
(
L(n) log(dD + 1e+ 1) + C3n

1/6

)
(98)

≤ C2dD + 1e2C4n
1/6(C4n

1/6 log(dD + 1e+ 1) + C3n
1/6) (99)

= C5n
1/3, (100)

where (96) follows by application of (3) in Theorem 2.1 with p = ∞, ε = 1
16
n−2/3, d = 1,

W = dD + 1e, L = L(n), and B = 1, and C2 is the absolute constant C from Theorem 2.1,
in (98) we set C3 := supx∈[1,∞)

log(16x2/3)

x1/6 < ∞, which is an absolute constant, in (99) we used
L(n) = d2(D+1)(C+1)1/2n1/6e ≤ 2(D+1)(C+1)1/2n1/6+1 ≤ 4(D+1)(C+1)1/2n1/6 and let
C4 := 4(D + 1)(C + 1)1/2, and in (100) we set C5 = C2dD + 1e2C4(C4 log(dD + 1e+ 1) + C3).
Using (94) and (95)-(100) in (92)-(93), finally yields

E(‖f̂n − g‖2L2(P )) ≤C1(2 + σ + σ2)

(
1

16
n−2/3 +

C5n
1/3 + 1

n

)
≤C1(2 + σ + σ2)

(
1

16
n−2/3 +

(C5 + 1)n1/3

n

)
=C1(2 + σ + σ2)

(
1

16
+ C5 + 1

)
n−2/3.

The proof is finalized by taking K(σ) = C1(2 + σ + σ2)( 1
16

+ C5 + 1).

The rate n−2/3 in Corollary 4.2 is optimal [33, Theorem 1], see also [34, Theorem 3.2] and [13,
Theorem 3]. In particular, compared to the corresponding best known result in the literature
given by an upper bound of rate (log(n))6n−2/3 [8, Theorem 1(b)], Corollary 4.2 disposes of
the (log(n))6-factor. We note that [8, Theorem 1(b)] applies to a more general class of smooth
functions mapping Rd to R. The removal of the (log(n))6-factor carries through to Lipschitz
functions on Rd with general d ∈ N, but we do not present the details here. The improvement
we obtain stems from the approximation result Lemma 3.4 and the use of the covering number
instead of VC-dimension as in [8]. More specifically, in the approximation of functions in
H1([0, 1]) through very deep fully-connected ReLU networks of fixed width and depth L, both
our Lemma 3.4 and [8, Theorem 2(b)] achieve guaranteed error decay of L−2. However, [8,
Theorem 2(b)] requires networks with arbitrarily large weight-magnitude, corresponding to
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unbounded sets, whereas Lemma 3.4 needs networks of weight magnitude bounded by 1 only.
This significant reduction in the size of the model class, to compact sets, makes it possible to
upper-bound the prediction error through covering numbers.

4.2 Optimal Regression and Optimal Approximation
The optimality established in Corollary 4.2 in the previous section is a consequence of a

deeper set of ideas, which we now bring to the fore and develop in a more general context.
This discussion will demonstrate how optimality in function approximation through ReLU
networks along with their covering number behavior plays a fundamental role in attaining
optimal regression. As a byproduct, we will be able to shed light on the specific choices for
L(n) and Fn in Corollary 4.2.

We build on the information-theoretic characterization of optimal sample complexity rates
developed by Yang and Barron [35]. Concretely, it is shown in [35, Section 3.2] that, for a
uniformly bounded function class G, the optimal sample complexity rate in the estimation
of regression functions g ∈ G is determined by the covering number of G. To make these
results more concrete, consider the general nonparametric regression setup introduced at the
beginning of Section 4. The estimation of g ∈ G from random samples can now be described as
the application of a mapping Fn : (X× R)n 7→ L∞(X) that takes the samples (xi, yi)

n
i=1 to the

estimate f̂n ∈ G. For example, in Corollary 4.2, Fn((xi, yi)
n
i=1) would be the mapping induced

by the empirical risk minimizer defined according to (83). By [35, Theorem 6], under a weak
technical condition4 on the packing number of G, it holds that, for all Fn : (X×R)n 7→ L∞(X),

sup
g∈G

E(‖Fn((xi, g(xi) + σξi)
n
i=1)− g‖2L2(P )) ≥ c(G, σ, P )κ2

n, (101)

where κn is the solution to the equation

κ2
n =

log(M(κn,G, L2(P )))

n
, (102)

and c(G, σ, P ) ∈ R+ is a constant depending on G, σ, and P only. The lower bound (101) is
achievable in the sense of the existence of an Fn : (X× R)n 7→ L∞(X) such that

sup
g∈G

E(‖Fn((xi, g(xi) + σξi)
n
i=1)− g‖2L2(P )) ≤ C(G, σ, P )κ2

n, (103)

where C(G, σ, P ) ∈ R+ is a constant depending on G, σ, and P only. In summary, the optimal
sample complexity rate can be characterized by the sequence (κ2

n)
∞
n=1. We now particularize

the Yang-Barron framework to G = H1([0, 1]) with P the uniform distribution on [0, 1]. First,
note that

c1ε
−1 ≤ log(N(ε,H1([0, 1]), L2([0, 1]))) ≤ log(M(ε,H1([0, 1]), L2([0, 1]))) ≤ C1ε

−1, ε ∈ (0, ε0),
(104)

where ε0, c1, C1 ∈ R+ are absolute constants. Here, the first inequality follows from Lemma 3.5
and in the second inequality we used Lemma F.1. The last inequality in (104) is thanks to

log(M(ε,H1([0, 1]), L2([0, 1]))) ≤ log(N(ε/2, H1([0, 1]), L2([0, 1])))

≤ log(N(ε/2, H1([0, 1]), L∞([0, 1])))

≤ C1ε
−1,

4Concretely, [35, Condition 2] requires that there exist an α ∈ (0, 1) such that
lim infε→0 log(M(αε,G, L2(P )))/ log(M(ε,G, L2(P ))) > 1.
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where in the first inequality we again used Lemma F.1, the second inequality follows from the
fact that coverings with respect to the L∞([0, 1])-norm are also coverings with respect to the
L2([0, 1])-norm, and in the last inequality we used [6, Eq. 5.12]. Next, take n ∈ N large enough5

for the solution κn of the equation κ2
n = log(M(κn,H1([0,1]),L2([0,1])))

n
to satisfy κn < ε0. We then

have c1κ
−1
n ≤ log(M(κn, H

1([0, 1]), L2([0, 1]))) ≤ C1κ
−1
n , which implies c1κ

−1
n

n
≤ κ2

n ≤ C1κ
−1
n

n
, and

hence
c
2/3
1 n−2/3 ≤ κ2

n ≤ C
2/3
1 n−2/3, (105)

thereby recovering the optimal rate n−2/3 mentioned in Corollary 4.2.
We proceed to derive sufficient conditions for a sequence of estimators to achieve optimal

sample complexity rate. These conditions are general in the sense of the estimators not having
to be neural networks and include, e.g., sparse dictionary approximation [36, 37, 38].
Corollary 4.3. Let X ⊆ Rd and consider the class G of regression functions mapping X to R.
Let g ∈ G, n ∈ N, and σ ∈ R+. Let P be a distribution on X, with the associated samples
(xi, yi)

n
i=1 = (xi, g(xi) + σξi)

n
i=1, where (xi)

n
i=1 are i.i.d. random variables of distribution P ,

(ξi)
n
i=1 are i.i.d. standard Gaussian random variables, and (xi)

n
i=1 and (ξi)

n
i=1 are statistically

independent.
Let εn ∈ (0, 1/2) and consider a class of functions Fn ⊆ L∞(X) such that

A(G,Fn, ‖ · ‖L2(P )) ≤ εn. (106)

Let f̂n be the empirical risk minimizer in Fn, i.e.,

1

n

n∑
i=1

(f̂n(xi)− yi)
2 = inf

f∈Fn

(
1

n

n∑
i=1

(f(xi)− yi)
2

)
, a.s. (107)

Then,

E(‖f̂n − g‖2L2(P )) ≤ C(1 + σ + σ2 + (R(G,Fn))
2)

(
ε2n
κ2
n

+K(G,Fn, εn, κn, P )

)
κ2
n, (108)

where C ∈ R+ is an absolute constant, R(G,Fn) := max{suph∈G ‖h‖L∞(X), supf∈Fn
‖f‖L∞(X)},

κn is the solution to (102), and

K(G,Fn, εn, κn, P ) =
log(N(ε2n,Fn, L

∞(X))) + 1

log(M(κn,G, L2(P )))
. (109)

Proof. We have

E(‖f̂n − g‖2L2(P )) (110)

≤ C(1 + σ + σ2 + (R(g,Fn))
2)

(
ε2n +

log(N(ε2n,Fn, L
∞(X))) + 1

n

)
(111)

≤ C(1 + σ + σ2 + (R(G,Fn))
2)

(
ε2n +

log(N(ε2n,Fn, L
∞(X))) + 1

n

)
(112)

= C(1 + σ + σ2 + (R(G,Fn))
2)

(
ε2n +K(G,Fn, εn, κn, P ) · log(M(κn,G, L2(P )))

n

)
(113)

= C(1 + σ + σ2 + (R(G,Fn))
2)

(
ε2n
κ2
n

+K(G,Fn, εn, κn, P )

)
κ2
n, (114)

5It suffices to take n ≥ d 8C1

ε30
e + 1, which we show leads to κn < ε0

2 . Suppose, for the sake of contradiction,
that for such n, it holds that κn ≥ ε0

2 . It would then follow from the monotonicity of the packing number
that log(M(κn,H

1([0, 1]), L2([0, 1]))) ≤ log(M( ε02 ,H
1([0, 1]), L2([0, 1]))) ≤ 2C1ε

−1
0 , which together with κ2

n =
log(M(κn,H

1([0,1]),L2([0,1])))
n implies κ2

n ≤ 2C1ε
−1
0

n ≤ 2C1ε
−1
0

⌈8C1/ε30⌉+1
<

ε20
4 . Hence, κn < ε0

2 , which establishes the
contradiction.
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where (111) follows from Theorem 4.1 with ε = εn and the prerequisites (78) and (79) satisfied
thanks to (106) and (107), respectively, in (112) we used R(g,Fn) ≤ R(G,Fn), and (114) is by
(102).

Assumption (106) in Corollary 4.3 is similar to the approximation assumption (78) in The-
orem 4.1, only here we need to control the worst-case error over the entire class G of regression
functions while Theorem 4.1 pertains to a fixed g ∈ G. Assumption (107) corresponds to the
empirical risk minimization condition (79) in Theorem 4.1, with the qualification that here we
require exact empirical risk minimization while Theorem 4.1 allows for an additive slack term,
given by ε2.

Thanks to the Yang-Barron lower bound (101), we can now conclude from Corollary 4.3,
specifically from (108), that for a sequence f̂n, n ∈ N, of empirical risk minimizers to be optimal
(up to constant factors), it suffices to meet the conditions (106) and (107) and have the quantity

C(1 + σ + σ2 + (R(G,Fn))
2)

(
ε2n
κ2
n

+K(G,Fn, εn, κn, P )

)
(115)

be upper-bounded by a constant not depending on n.
We next illustrate how the choices made in Corollary 4.2, specifically for L(n) and Fn in

(82), meet all these conditions thereby proving that the estimation of 1-Lipschitz functions can
be accomplished through very deep ReLU networks in an information-theoretically optimal
manner. Accordingly, we take G = H1([0, 1]), let L(n) and Fn be as in (82), and, for concrete-
ness, take P to be the uniform distribution on [0, 1]. First, we verify that the assumptions in
Corollary 4.2 imply (106) and (107). Condition (107) is identical to (83) in Corollary 4.2. The
approximation assumption (106) is satisfied with

εn =
1

4
n−1/3 (116)

as (86)-(91) holds for all g ∈ H1([0, 1]).
We proceed to upper-bound the individual terms in (115) and start by noting that

R(G,Fn) = R(H1([0, 1]),Fn) = max

{
sup

h∈H1([0,1])

‖h‖L∞(X), sup
f∈Fn

‖f‖L∞(X)

}
≤ 1, (117)

thanks to the truncation operation T1 in the definition of Fn. Second, we need to verify that
Fn is such that ε2n is balanced with κ2

n in the sense of ε2n
κ2
n

being upper-bounded by a constant
independent of n. This follows from

ε2n
κ2
n

≤
1
16
n−2/3

c
2/3
1 n−2/3

=
1

16c
2/3
1

, (118)

where we used (105) and (116).
To upper-bound K(H1([0, 1]),Fn, εn, κn, P ), we first factorize according to

K(H1([0, 1]),Fn, εn, κn, P ) =
log(N(ε2n,Fn, L

∞([0, 1]))) + 1

log(M(κn, H1([0, 1]), L2([0, 1])))
(119)

=
log(N(ε2n,Fn, L

∞([0, 1]))) + 1

log(N(εn,R(1, dD + 1e, L(n), 1), L2([0, 1])))

· log(N(εn,R(1, dD + 1e, L(n), 1), L2([0, 1])))

log(N(4εn, H1([0, 1]), L2([0, 1])))

· log(N(4εn, H
1([0, 1]), L2([0, 1])))

log(M(κn, H1([0, 1]), L2([0, 1])))
(120)

and then treat the three factors in (120) individually.
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(i) For the numerator of the first factor in (120), we have

log(N(ε2n,Fn, L
∞([0, 1]))) + 1 (121)

= log(N(ε2n, T1 ◦ R(1, dD + 1e, L(n), 1), L∞([0, 1]))) + 1 (122)
≤ log(N(ε2n,R(1, dD + 1e, L(n), 1), L∞([0, 1]))) + 1 (123)

≤ C2dD + 1e2L(n) log
(
(dD + 1e+ 1)L(n)

ε2n

)
+ 1 (124)

≤ (C2 + 1)dD + 1e2L(n) log
(
(dD + 1e+ 1)L(n)

ε2n

)
, (125)

where (123) follows from the same argument as used to arrive at (94), and in (124)
we employed the covering number upper bound in Theorem 2.1. For the denominator
log(N(εn,R(1, dD+1e, L(n), 1), L2([0, 1]))), we apply the covering number lower bound6

in Theorem 2.1, resulting in

log(N(εn,R(1, dD + 1e, L(n), 1), L2([0, 1]))) (126)

≥ c2dD + 1e2L(n) log
(
(dD + 1e+ 1)L(n)

εn

)
. (127)

Dividing (125) by (127), it follows that

C2 + 1

c2
log

(
(dD + 1e+ 1)L(n)

ε2n

)/
log

(
(dD + 1e+ 1)L(n)

εn

)
≤ 2

C2 + 1

c2
, (128)

where we used (dD + 1e+ 1)L(n) < (dD + 1e+ 1)2L(n).

(ii) For the second factor in (120), the numerator can be upper-bounded according to

log(N(εn,R(1, dD + 1e, L(n), 1), L2([0, 1]))) (129)
≤ log(N(εn,R(1, dD + 1e, L(n), 1), L∞([0, 1]))) (130)

≤ log

(
N

(
1

16
n−2/3,R(1, dD + 1e, L(n), 1), L∞([0, 1])

))
(131)

≤ C5n
1/3, (132)

where (130) follows from the fact that coverings with respect to the L∞([0, 1])-norm are
also coverings with respect to the L2([0, 1])-norm, (131) is by 1

16
n−2/3 < εn, and (132)

follows from (95)-(100). The denominator in the second factor in (120) can be lower-
bounded by (104) according to

log(N(4εn, H
1([0, 1]), L2([0, 1]))) ≥ c1(4εn)

−1 = c1n
1/3. (133)

Using (132) and (133), we finally obtain

log(N(εn,R(1, dD + 1e, L(n), 1), L2([0, 1])))

log(N(4εn, H1([0, 1]), L2([0, 1])))
≤ C5n

1/3

c1n1/3
≤ C5

c1
. (134)

6The application of the lower bound requires W,L ≥ 60, which holds thanks to L(n) = d2(D + 1)(C +
1)1/2n1/6e, W = dD + 1e, with D the constant specified in Lemma 3.4 satisfying D ≥ 60 owing to the specifics
in the proof of [18, Theorem 3.1].
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(iii) For the third factor in (120), we have

log(N(4εn, H
1([0, 1]), L2([0, 1])))

log(M(κn, H1([0, 1]), L2([0, 1])))
≤ C1(4εn)

−1

c1κ−1
n

≤ C
4/3
1

c1
, (135)

where the first inequality follows from (104) and in the second inequality we used (105).
Note that here we exploited the fact that εn is of the same order as κn, namely n−1/3.

Putting (i)-(iii) together, we have shown that (115) can, indeed, be upper-bounded by a constant
not depending on n, thereby establishing the information-theoretic optimality of the sequence
of neural network estimators f̂n in Corollary 4.2. This was accomplished by exploiting three
key properties. The first one is the log(1/εn)-scaling behavior of the metric entropy of the set
of approximants R(1, dD + 1e, L(n), 1) used to establish (121)-(128). Specifically, this scaling
behavior is crucial in the last step (128). The second property is the ε−1-scaling behavior of
the metric entropy of the set of regression functions H1([0, 1]) used to arrive at (135). Such a
scaling behavior is common for unit balls in function spaces, see, e.g., [10, Table 1]. The third
property, leading to (134), states that the metric entropy of the set of regression functions
H1([0, 1]) has to be balanced with that of the set of approximants R(1, dD + 1e, L(n), 1). We
note that this balancing property can be relaxed to

log(N(ε,Fε, L
2(X)))

log(N(4ε,G, L2(X)))
≤ rG(log(N(4ε,G, L2(X)))), (136)

where G is the class of regression functions under consideration, Fε denotes a set of approximants
satisfying A(G,Fε, ‖ · ‖) ≤ ε, and rG : R+ 7→ R+ is such that lim supx→+∞

log(rG(x))
log(x)

= 0.
In this case the upper bound (108) in Corollary 4.3 would still guarantee optimal sample
complexity rate, but would exhibit an additional logarithmic factor. An example of such a
behavior, albeit in the context of optimal approximation (through neural networks) rather
than regression, can be found in [10] where it is referred to as Kolmogorov-Donoho optimal
approximation, defined through A(G,Fε, ‖ · ‖L2(X)) ≤ ε and (136) holding concurrently. Note
that A(G,Fε, ‖ ·‖L2(X)) ≤ ε implies log(N(ε,Fε,L2(X)))

log(N(4ε,G,L2(X))) ≥ 1. Although not explicitly mentioned and
formally established, Kolmogorov-Donoho optimal neural network approximation is what leads
to optimal sample complexity rates up to a logarithmic factor in [13, 14, 21]. We remark that
Kolmogorov-Donoho optimality can also be achieved through sparse dictionary approximation
[36, 37, 38]. Thanks to its generality, Corollary 4.3 allows to conclude that taking the set
of approximants Fn to be obtained by sparse dictionary approximation, sample complexity
rate-optimal regression of G up to a logarithmic factor is guaranteed whenever Fn achieves
Kolmogorov-Donoho optimal approximation of G.

5 Sparse Networks with Uniformly Bounded Weights
Sparse neural networks exhibit a connectivity s that is (typically much) smaller than the

total number of weights L(W 2 +W ) in the network. In practical applications sparsity is often
enforced with the goal of minimizing the amount of memory needed to store the network.
The approximation-theoretic limits of sparse neural networks have been studied widely in the
literature, starting with [22, 23, 25] and further considered, both in the context of function
approximation and regression, in [10, 13, 14, 21, 24]. In the spirit of Theorem 2.1, we next
characterize the covering numbers of sparse ReLU networks with uniformly bounded weights.
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Theorem 5.1. Let p ∈ [1,∞], d,W,L, s ∈ N, B, ε ∈ R+, with s ≥ max{W,L} and B ≥ 1.
Then, for all ε ∈ (0, 1/2), we have

log(N(ε,R(d,W,L,B, s), Lp([0, 1]d))) ≤ Cmin{s,W 2L} log
(
(W + 1)LBL

ε

)
, (137)

where C ∈ R+ is an absolute constant. Moreover, there exist absolute constants c,D ∈ R+ such
that, if, in addition, W,L ≥ 60 and s ≥ Dd2L, then, for all ε ∈ (0, 1/4), it holds that

log(N(ε,R(d,W,L,B, s), Lp([0, 1]d))) ≥ cmin{s,W 2L} log
(
(W̃ + 1)LBL

ε

)
, (138)

where W̃ := min{d
√

s
L
e,W}.

Proof. The proof is provided in Appendix D.
We first note that the condition s ≥ max{W,L} comes without loss of generality, for the

following reasons. A network with s < L necessarily has one or more layers with weights
equal to 0 and hence realizes a constant function, which could equivalently be obtained by a
single-layer network. Likewise, for s < W , there would be nodes that can be removed without
affecting the network’s input-output relation.

We proceed to discuss the effect of the connectivity parameter s on the covering num-
ber bounds (137) and (138). First, recall that networks in N (d,W,L,B) have no more than
L(W 2 +W ) ≤ 2W 2L weights. Comparing the factors in front of the logarithms in (137) and
(138) to those in the corresponding bounds (3) and (4) for the fully-connected case, hence sug-
gests an interpretation of min{s,W 2L} as the effective connectivity. An important difference
between the bounds for the fully-connected case in Theorem 2.1 and those in Theorem 5.1 is
the appearance of the quantity W̃ = min{d

√
s
L
e,W} inside the logarithm in the lower bound

(138). For d
√

s
L
e < W , we will hence have a loss of tightness, albeit only of logarithmic order,

between the bounds (137) and (138). The term s
L

can be interpreted as the average connectiv-
ity per layer, a quantity also appearing in the VC-dimension lower bound [9, Equation (2)] for
ReLU networks.

We finally note that the fundamental limits of sparse ReLU networks when used in neural
network transformation, function approximation, and optimal regression, can be inferred by
following the playbooks in Sections 3 and 4, but with the covering number behavior as quantified
by Theorem 5.1.

6 Fully-connected Networks with Base-2 Quantized
Weights

In this section, we characterize the covering number of ReLU networks with base-2 quantized
weights, i.e., we consider the set RQa

b
(d,W,L) with Qa

b := (−2a+1, 2a+1)∩ 2−bZ, where a, b ∈ N.
The motivation for analyzing this setting stems from the fact that neural networks stored on
electronic devices necessarily have their weights encoded into finite-length bitstrings. For ease
of presentation, we simplify notation according to

N a
b (d,W,L) :=NQa

b
(d,W,L)

= {Φ ∈ N (d) : W(Φ) ≤ W, L(Φ) ≤ L, coef(Φ) ⊆ Qa
b},

Ra
b (d,W,L) := {R(Φ) : Φ ∈ N a

b (d,W,L)}.

To the best of our knowledge, there are no results in the literature on covering numbers of
ReLU networks with base-2 quantized weights. Here, we report covering number lower and
upper bounds that are tight.
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Theorem 6.1. Let p ∈ [1,∞], d,W,L, a, b ∈ N. For all ε ∈ (0, 1/2), it holds that

log(N(ε,Ra
b (d,W,L), Lp([0, 1]d))) ≤ CW 2L ·min

{
(a+ b), log

(
(W + 1)L2aL

ε

)}
, (139)

with C ∈ R+ an absolute constant. Moreover, there exist absolute constants c,D,E ∈ R+ such
that, for W,L ≥ D with L(a+ b) ≥ E log(W ), and all ε ∈ (0, 1

100
),

log(N(ε,Ra
b (d,W,L), Lp([0, 1]d))) ≥ cW 2L ·min

{
(a+ b), log

(
(W + 1)L2aL

ε

)}
. (140)

Proof. We start by proving the upper bound. Arbitrarily fix ε ∈ (0, 1/2). As Ra
b (d,W,L) is an

ε-covering of itself, we have N(ε,Ra
b (d,W,L), Lp([0, 1]d)) ≤ |Ra

b (d,W,L)| and hence

log(N(ε,Ra
b (d,W,L), Lp([0, 1]d))) ≤ log(|Ra

b (d,W,L)|) (141)
≤ log(|N a

b (d,W,L)|) (142)
≤ 5W 2L log(|Qa

b |) (143)
< 10W 2L(a+ b), (144)

where (143) follows from Lemma 2.4 with A = Qa
b , and (144) is by |Qa

b | = |(−2a+1, 2a+1) ∩
2−bZ| ≤ 2a+2 · 2b ≤ 22(a+b). Moreover, as Ra

b (d,W,L) ⊆ R(d,W,L, 2a+1), it holds that

A(Ra
b (d,W,L),R(d,W,L, 2a+1), ‖ · ‖Lp([0,1]d)) = 0. (145)

Application of Proposition 3.1 with G = Ra
b (d,W,L), F = R(d,W,L, 2a+1), δ = ‖ · ‖Lp([0,1]d), ε

replaced by ε/4, and the prerequisite (39) satisfied thanks to (145), now yields

N(ε,Ra
b (d,W,L), Lp([0, 1]d)) ≤ N(ε/4,R(d,W,L, 2a+1), Lp([0, 1]d)). (146)

The logarithm of the right-hand-side of (146) can be upper-bounded according to

log(N(ε/4,R(d,W,L, 2a+1), Lp([0, 1]d))) ≤C1W
2L log

(
(W + 1)L2(a+1)L

ε/4

)
(147)

< 3C1W
2L log

(
(W + 1)L2aL

ε

)
, (148)

where in (147) we applied Theorem 2.1, (148) follows from (W+1)L2(a+1)L

ε/4
< (W+1)L23aL

ε·ε2 <

( (W+1)L2aL

ε
)3, and C1 ∈ R+ is an absolute constant. Combining (146) and (147)-(148), es-

tablishes
log(N(ε,Ra

b (d,W,L), Lp([0, 1]d))) < 3C1W
2L log

(
(W + 1)L2aL

ε

)
. (149)

Putting (141)-(144) and (149) together finally yields

log(N(ε,Ra
b (d,W,L), Lp([0, 1]d)))

< min

{
10W 2L(a+ b), 3C1W

2L log

(
(W + 1)L2aL

ε

)}
< (10 + 3C1)W

2Lmin

{
(a+ b), log

(
(W + 1)L2aL

ε

)}
.

Upon setting C = 10 + 3C1, this concludes the proof of the upper bound. The proof of the
lower bound is lengthy and hence relegated to Appendix E.
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First, we note that the upper bound (139) and the lower bound (140) are tight up to an
absolute multiplicative constant. This allows us to conclude that the covering number of ReLU
networks with base-2 quantized weights exhibits two regimes as a function of ε. Specifically,
for ε ≥ (W+1)L2aL

2a+b , the log-term in the bounds (139) and (140) is active, which renders them
structurally identical to the bounds for networks with unquantized weights, as stated in The-
orem 2.1. In this regime quantized neural networks, in terms of their covering numbers, hence
behave like unquantized networks. On the other hand, for ε < (W+1)L2aL

2a+b , the covering number
can be sandwiched by quantities that are independent of ε and solely determined by the param-
eters W,L, a, b according to cW 2L(a+ b) ≤ log(N(ε,Ra

b (d,W,L), Lp([0, 1]d))) ≤ CW 2L(a+ b).
In this regime, the covering ball radius ε is small enough to reveal the quantized nature of the
network weights. In summary, we have a phase-transition behavior, in terms of ε, between
a regime where N a

b (d,W,L) behaves like networks with weights in R and a regime where the
quantized nature of the weights limits the approximation capacity of N a

b (d,W,L).
We finally note that the fundamental limits of ReLU networks with base-2 quantized weights

when used in neural network transformation, function approximation, and optimal regression,
can be inferred by following the playbooks in Sections 3 and 4, but with the covering number
behavior as quantified by Theorem 6.1.

7 Fully-connected Networks with Truncated Output
Fully-connected ReLU networks with unconstrained weight magnitude are prevalent in the

literature [7, 8, 11, 39]. As the covering number of the function class R(d,W,L) realized by
such networks is infinite, their performance limits are typically characterized through the VC-
dimension. It turns out, however, that when dealing with bounded functions such as the set
H1([0, 1]), it suffices to consider ReLU networks with truncated outputs. This allows to develop
a more refined picture, namely by arguing as follows. First, note that R(1,W, L, 1) ⊆ R(1,W, L)
together with Lemma 3.4, yields

A(H1([0, 1]),R(1,W, L), ‖ · ‖Lp([0,1])) ≤A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖Lp([0,1])) (150)
≤C(W 2L2 log(W ))−1, (151)

for p ∈ [1,∞], W,L ∈ N, with W,L ≥ D, where C,D ∈ R+ are the absolute constants specified
in Lemma 3.4. To the best of our knowledge a corresponding lower bound is available only for
p = ∞, namely [18, Proposition 2.11], [7, Theorem 2.3],

A(H1([0, 1]),R(1,W, L), ‖ · ‖L∞([0,1]) ≥ c (W 2L2(log(W ) + log(L)))−1,

with c ∈ R+ an absolute constant. The goal of this section is to derive a lower bound for p = 2.
This will require, inter alia, an upper bound on the covering number of ReLU networks with
unconstrained weight magnitude and truncated output. To the best of our knowledge, there are
no results available in the literature on covering numbers of ReLU networks with unconstrained
weight magnitude and truncated output.

We proceed as follows. First, note that

A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])) (152)
= sup

f∈H1([0,1])

inf
g∈R(1,W,L)

‖f − g‖L2([0,1]) (153)

≥ sup
f∈H1([0,1])

inf
g∈R(1,W,L)

‖T1 ◦ f − T1 ◦ g‖L2([0,1]) (154)

= sup
f∈H1([0,1])

inf
g∈R(1,W,L)

‖f − T1 ◦ g‖L2([0,1]) (155)

= A(H1([0, 1]), T1 ◦ R(1,W, L), ‖ · ‖L2([0,1])), (156)
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where (154) follows from the fact that T1 is 1-Lipschitz, and in (155) we used that f is uniformly
bounded by 1 on [0, 1]. Therefore, to lower-bound A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])), it suf-
fices to lower-bound A(H1([0, 1]), T1 ◦ R(1,W, L), ‖ · ‖L2([0,1])), which will be effected through
the technique developed to prove the minimax approximation error lower bound (44) in Corol-
lary 3.3 combined with a new covering number upper bound for T1 ◦R(1,W, L). We note that
all our arguments can be extended, with minor effort, to the approximation of function classes
that are uniformly bounded by arbitrary constants E ∈ R+, but we will stick to H1([0, 1]) for
brevity of exposition.

We first present the upper bound on the covering number of T1 ◦R(d,W,L) and then show
how it can be used to lower-bound A(H1([0, 1]), T1 ◦ R(1,W, L), ‖ · ‖L2([0,1])).

Theorem 7.1. Let d,W,L ∈ N, with W,L ≥ 2, and let P be a distribution on Rd. For all
ε ∈ (0, 1/2), it holds that

log(N(ε, T1 ◦ R(d,W,L), L2(P ))) ≤ CW 2L2 log(WL) log(ε−1),

with C ∈ R+ an absolute constant.

The proof of Theorem 7.1 is based on a relation in [40] between the covering number with
respect to the L2(P )-norm, for arbitrary distributions P , and the fat-shattering dimension of
uniformly-bounded function classes combined with bounds on the fat-shattering dimension of
ReLU networks [9]. We first prepare the technical ingredients of the proof and start by recalling
the definition of fat-shattering dimension.

Definition 7.2. [40] Let X be a set, F a class of functions from X to R, and γ ∈ R+. The
fat-shattering dimension of F , written as fat (F , γ), is the largest m ∈ N for which there exists
(x1, . . . , xm, y1, . . . , ym) ∈ Xm×Rm such that for every (b1, . . . , bm) ∈ {0, 1}m, there is an f ∈ F
so that, for all i ∈ {1, . . . ,m},

f(xi)

{
≥ yi + γ, if bi = 1,

≤ yi, if bi = 0.
(157)

Next, we upper-bound the fat-shattering dimension of T1 ◦ R(d,W,L).

Lemma 7.3. For d,W,L ∈ N, with W,L ≥ 2, it holds that

fat (T1 ◦ R(d,W,L), γ) ≤ ChW
2L2(log(WL)), for all γ ∈ R+, (158)

with Ch ∈ R+ an absolute constant.

Proof. The result is essentially an implication of [9, Eq. (2)], with minor additional observations.
We provide the details in Appendix B.4.

The Mendelson-Vershynin upper bound [40] on the covering number in terms of fat-shattering
dimension is as follows.

Theorem 7.4. [40, Theorem 1] Let F be a class of functions defined on a set X with
supx∈X ,f∈F |f(x)| ≤ 1. Then, for every distribution P on X , and all ε ∈ (0, 1),

N(ε,F , L2(P )) ≤
(
2

ε

)K·fat(F ,cε)

,

where K, c ∈ R+ are absolute constants.

We are now ready to prove Theorem 7.1.
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Proof of Theorem 7.1. Application of Theorem 7.4 with F = T1 ◦ R(d,W,L), yields

N(ε, T1 ◦ R(d,W,L), L2(P )) ≤
(
2

ε

)K·fat(T1◦R(d,W,L),cε)

. (159)

Taking logarithms in (159) and applying Lemma 7.3 with γ = cε, results in

log(N(ε, T1 ◦ R(d,W,L), L2(P ))) ≤K · ChW
2L2(log(WL)) log(2ε−1).

The proof is concluded upon noting that log(2ε−1) ≤ log(ε−2) = 2 log(ε−1), for ε ∈ (0, 1/2),
and letting C := 2K · Ch.

We are now ready to put Theorem 7.1 to work in deriving the sought lower bound on
A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])).

Corollary 7.5. For W,L ∈ N, with W,L ≥ 2, it holds that

A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])) ≥ min

{
1

8
, C(W 2L2(log(WL))2)−1

}
, (160)

with C ∈ R+ an absolute constant.

Proof. Set
κ := A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])). (161)

For κ ≥ 1
8
, (160) holds trivially. For κ < 1

8
, we first note that putting (161) together with

(152)-(156), yields
A(H1([0, 1]), T1 ◦ R(1,W, L), ‖ · ‖L2([0,1])) ≤ κ. (162)

It then follows from Proposition 3.1 with ε = κ, G = H1([0, 1]), F = T1 ◦ R(1,W, L), δ =
‖ · ‖L2([0,1]), and the prerequisite (39) satisfied thanks to (162), that

N(κ, T1 ◦ R(1,W, L), L2([0, 1])) ≥ N(4κ,H1([0, 1]), L2([0, 1])). (163)

Next, we upper-bound the left-hand-side and lower-bound the right-hand-side of (163). For the
former, we note that Theorem 7.1 with d = 1 and P the uniform distribution on [0, 1], yields

log(N(κ, T1 ◦ R(1,W, L), L2([0, 1]))) ≤ C1W
2L2 log(WL) log(κ−1), (164)

with C ∈ R+ an absolute constant. The lower bound on N(4κ,H1([0, 1]), L2([0, 1])) is obtained
from Lemma 3.5 with ε = 4κ as

log(N(4κ,H1([0, 1]), Lp([0, 1]))) ≥ C2(4κ)
−1, (165)

with C2 ∈ R+ an absolute constant. Combining (164) and (165) with (163), yields

C1W
2L2 log(WL) log(κ−1) ≥ C2(4κ)

−1,

which implies
κ−1

log(κ−1)
≤ C3W

2L2 log(WL), (166)

with C3 := max{4C1

C2
, 4} ∈ R+ an absolute constant. We further upper-bound the right-hand-

side of (166) according to

C3W
2L2 log(WL) =

8 log(C3)C3W
2L2(log(WL))2

log((WL)8 log(C3))
(167)

≤ 8 log(C3)C3W
2L2(log(WL))2

log(8 log(C3)C3W 2L2(log(WL))2)
, (168)
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where in (168) we used

(WL)8 log(C3) ≥ (WL)4 log(C3) · (WL)4

≥ (C3)
4 ·W 2L2(log(WL))2

≥ 8 log(C3)C3W
2L2(log(WL))2.

Next, define f : R+ 7→ R according to f(x) = x
log(x)

. Then, (166)-(168) can be written as

f(κ−1) ≤ f(8 log(C3)C3W
2L2(log(WL))2). (169)

We note that κ−1 > (1
8
)−1 > e and 8 log(C3)C3W

2L2(log(WL))2 > e, and the function f is
strictly increasing on (e,∞) as f ′(x) = ln(2) ln(x)−1

(ln(x))2
> 0, for x ∈ (e,∞). It hence follows from

(169) that κ−1 ≤ 8 log(C3)C3W
2L2(log(WL))2, which is

κ = A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])) ≥ (8 log(C3)C3)
−1(W 2L2(log(WL))2)−1.

The proof is concluded upon taking C = (8 log(C3)C3)
−1.

As a byproduct of the results obtained in this section, we can conclude that in the approxi-
mation (in L2([0, 1])-norm) of functions in H1([0, 1]) going from networks with bounded weights
to networks with unbounded weights does not substantially improve approximation accuracy.
Specifically, we have the following chain of inequalities

min

{
1

8
, C(W 2L2(log(WL))2)−1

}
≤ A(H1([0, 1]),R(1,W, L), ‖ · ‖L2([0,1])) (170)

≤ A(H1([0, 1]),R(1,W, L, 1), ‖ · ‖L2([0,1])) (171)
≤ C2(W

2L2 log(W ))−1, (172)

where (170) is the lower bound (160), (171) follows from R(1,W, L, 1) ⊆ R(1,W, L), and (172)
is Lemma 3.4 with p = 2. Here, C,C2 ∈ R+ are absolute constants. This shows that the
improvement obtainable from allowing unbounded weights is at most of order log(W )

(log(WL))2
.

A Notation and Basic Definitions
We denote the cardinality of the set X by |X|. N = {1, 2, . . . } designates the natural

numbers, R stands for the real numbers, R+ for the positive real numbers, and ∅ for the
empty set. The maximum, minimum, supremum, and infimum of the set A ⊆ R are denoted
by maxA, minA, supA, and inf A, respectively. The indicator function 1P for proposition
P is equal to 1 if P is true and 0 else. For a metric space (X , δ) and sets F ,G ⊆ X , we
define A(G,F , δ) = supg∈G inff∈F δ(f, g). For a vector b ∈ Rd, we let ‖b‖∞ := maxi=1,...,d |bi|,
‖b‖0 :=

∑d
i=1 1bi ̸=0, and ‖b‖1 :=

∑d
i=1 |bi|. Similarly, for a matrix A ∈ Rm×n, we define

‖A‖∞ = maxi=1,...,m,j=1,...,n |Ai,j| and ‖A‖0 =
∑m

i=1

∑n
j=1 1Ai,j ̸=0. 1m and 0m stand for the m-

dimensional vector with all entries equal to 1 and 0, respectively. Im refers to the m×m identity
matrix. 1m×n and 0m×n denote the m×n matrix with all entries equal to 1 and 0, respectively.
We designate the block-diagonal matrix with diagonal element-matrices A1, . . . , An, possibly of
different dimensions, by diag(A1, . . . , An). The truncation operator TE : R 7→ [−E,E], E ∈ R+,
is TE(x) = max{−E,min{E, x}}. log(·) and ln(·) denote the logarithm to base 2 and base e,
respectively. The ReLU activation function is defined as ρ(x) = max{x, 0}, for x ∈ R, and,
when applied to vectors, acts elementwise. The sign function sgn : R 7→ {0, 1} is given by
sgn(x) = 1, for x ≥ 0, and sgn(x) = 0, for x < 0. We use S(A, b) to refer to the affine mapping
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S(A, b)(x) = Ax + b, x ∈ Rn2 , with A ∈ Rn1×n2 , b ∈ Rn1 . For the set X ⊆ Rd, with d ∈ N,
and the function f : X 7→ R, we define the Lp(X)-norm of f , with p ∈ [1,∞), according to
‖f‖Lp(X) = (

∫
x∈X |f(x)|

pdµ(x))1/p, where µ is the Lebesgue measure on Rd. The L∞(X)-norm
of f is given by ‖f‖L∞(X) = supx∈X |f(x)|, and, for a distribution P on X, we define the L2(P )-
norm of f as ‖f‖L2(P ) = (

∫
x∈X |f(x)|

2dP (x))1/2. A constant is said to be absolute if it does not
depend on any variables or parameters.

B Further Proofs
B.1 Proof of Proposition 3.1

We start with a lemma that gives a lower bound on the cardinality of F , in terms of the
packing number of G, under the condition (39).
Lemma B.1. Let (X , δ) be a metric space, F ,G ⊆ X , and ε ∈ R+. Assume that A(G,F , δ) ≤ ε.
Then, we have

|F| ≥ M(2ε,G, δ).

Proof. Arbitrarily fix ε ∈ R+. Suppose, for the sake of contradiction, that |F| < M(2ε,G, δ),
which would imply the existence of a (2ε)-packing P of G such that |F| < |P|. In particular,
F would be a finite set. Since P is a subset of G, we have A(P ,F , δ) ≤ A(G,F , δ) ≤ ε,
and therefore every element of P would be contained in an ε-neighborhood, with respect to
the metric δ, of an f ∈ F . As |F| < |P| and there are |F| such neighborhoods and |P|
elements to be contained in neighborhoods, the pigeonhole principle implies the existence of
x1, x2 ∈ P such that x1, x2 ∈ {x : δ(f0, x) ≤ ε} for some f0 ∈ F . It would then follow from the
triangle inequality that δ(x1, x2) ≤ δ(x1, f0) + δ(f0, x2) ≤ 2ε, which implies that P can not be
a (2ε)-packing. This establishes the desired contradiction.

We are now ready to prove Proposition 3.1.
If N(ε,F , δ) = ∞, then (40) holds trivially. For N(ε,F , δ) < ∞, suppose that C is a

minimal ε-covering of F . Defining p : F → C according to p(f) = argminc∈C δ(f, c), we hence
get

δ(f, p(f)) ≤ ε. (173)
Elements of G can now be approximated by elements of C, with corresponding minimax ap-
proximation error

A(G, C, δ) = sup
g∈G

inf
c∈C

δ(g, c) (174)

= sup
g∈G

inf
f∈F

inf
c∈C

δ(g, c) (175)

≤ sup
g∈G

inf
f∈F

inf
c∈C

(δ(g, f) + δ(f, c)) (176)

= sup
g∈G

inf
f∈F

(δ(g, f) + δ(f, p(f))) (177)

≤ sup
g∈G

inf
f∈F

(δ(g, f) + ε) (178)

=A(G,F , δ) + ε, (179)
≤ 2ε. (180)

where (176) is by the triangle inequality, (177) follows by definition of p, in (178) we used (173),
and (180) is thanks to the assumption A(G,F , δ) ≤ ε. Application of Lemma B.1 with F = C,
ε replaced by 2ε, and the prerequisite satisfied thanks to (174)-(180), yields

N(ε,F , δ) = |C| ≥ M(4ε,G, δ),
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which together with M(4ε,G, δ) ≥ N(4ε,G, δ), owing to Lemma F.1, concludes the proof.

B.2 Proof of Lemma 2.5
Fix a maximal (2ε)-packing {fi}M(2ε,R(1,W,L,B),L1([0,1]))

i=1 of R(1,W, L,B) with respect to the
L1([0, 1])-norm. We shall lift this packing into a (2ε)-packing of R(d,W,L,B) with respect
to the Lp([0, 1]d)-norm. Specifically, for i ∈ {1, . . . ,M(2ε,R(1,W, L,B), L1([0, 1]))}, as fi ∈
R(1,W, L,B), there exists a network configuration Φi = (Ai

ℓ, b
i
ℓ)

L̃i
ℓ=1 ∈ N (1,W, L,B) with L̃i ≤

L such that R(Φi) = fi. Let (Ãi
1, b̃

i
1) = (( Ai

1, 0d′×(d−1) ), bi1), with d′ the number of rows of Ai
1,

and (Ãi
ℓ, b̃

i
ℓ) = (Ai

ℓ, b
i
ℓ), for 1 < ℓ ≤ L̃i, and set gi := R((Ãi

ℓ, b̃
i
ℓ)

L̃i
ℓ=1). We note that, for all

(x1, . . . , xd) ∈ Rd,
Ãi

1(x1, . . . , xd)
T + b̃i1 = Ai

1x1 + bi1,

which implies, for all (x1, . . . , xd) ∈ Rd,

gi(x1, . . . , xd) = R((Ãi
ℓ, b̃

i
ℓ)

L̃i
ℓ=1)(x1, . . . , xd) = R((Ai

ℓ, b
i
ℓ)

L̃i
ℓ=1)(x1) = fi(xi). (181)

As (Ãi
ℓ, b̃

i
ℓ)

L̃i
ℓ=1 ∈ N (d,W,L,B), we have gi ∈ R(d,W,L,B). Next, we shall establish that

{gi}M(2ε,R(1,W,L,B),L1([0,1]))
i=1 is a (2ε)-packing of R(d,W,L,B) with respect to the Lp([0, 1]d)-

norm. To this end, let q ∈ [1,∞] be such that 1
p
+ 1

q
= 1. We then have, for i, j ∈

{1, . . . ,M(2ε,R(1,W, L,B), L1([0, 1]))} with i 6= j, that
‖gi − gj‖Lp([0,1]d) = ‖gi − gj‖Lp([0,1]d)‖1‖Lq([0,1]d) (182)

≥‖gi − gj‖L1([0,1]d) (183)

=

∫
(x1,...,xd)∈[0,1]d

|gi(x1, . . . , xd)− gj(x1, . . . , xd)| dx1 . . . dxd (184)

=

∫
(x1,...,xd)∈[0,1]d

|fi(x1)− fj(x1)| dx1 . . . dxd (185)

=

∫
x1∈[0,1]

|fi(x1)− fj(x1)|dx1 (186)

= ‖fi − fj‖L1([0,1]) (187)
> 2ε, (188)

where in (182) we denoted by 1 the constant function taking value 1 on [0, 1]d, (183) follows from
the Hölder inequality, in (185) we used (181), and (188) is a consequence of {fi}M(2ε,R(1,W,L,B),L1([0,1]))

i=1

being a (2ε)-packing with respect to the L1([0, 1])-norm. We have therefore established that
{gi}M(2ε,R(1,W,L,B),L1([0,1]))

i=1 is a (2ε)-packing of R(d,W,L,B) with respect to the Lp([0, 1]d)-norm,
and hence

M(2ε,R(d,W,L,B), Lp([0, 1]d)) ≥ M(2ε,R(1,W, L,B), L1([0, 1])). (189)

B.3 Proof of Lemma 2.7
For ε ≥ E

4N
, we have log(d E

4εN
e) = 0 so that (23) holds trivially. For ε < E

4N
, we prove

the statement by explicitly constructing an ε-packing of suitable cardinality. To this end, for
y = (yi)

N
i=1, we define functions fy ∈ Σ(XN ,∞) as follows

fy(x) =


0, for x ∈ (−∞, 0],

fy
( i− 1

N

)
+N(x− i− 1

N
)(yi − fy

( i− 1

N

)
), for x ∈

( i− 1

N
,
i

N

]
, i = 1, . . . , N,

yN , for x ∈ (1,∞).
(190)
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and note that fy(0) = 0 and fy(
i
N
) = yi, for i = 1, . . . , N . Now, consider the set of functions

FN,M :=

{
fy : y = (yi)

N
i=1 ∈

({
ℓ

M
E

}M

ℓ=0

)N}
⊆ Σ(XN , E),

with M an integer to be specified later, namely such that FN,M is an ε-packing of Σ(XN , E)
with appropriate cardinality. We proceed to derive a lower bound on the distance between
distinct elements in FN,M . For y = (yi)

N
i=1 ∈ ({ ℓ

M
E}Mℓ=0)

N and ỹ = (ỹi)
N
i=1 ∈ ({ ℓ

M
E}Mℓ=0)

N such
that y 6= ỹ, we let j ∈ {1, . . . , N} be the smallest index for which yj 6= ỹj, and then get

‖fy − fỹ‖L1([0,1]) (191)

=

∫ 1

0

|fy(x)− fỹ(x)|dx (192)

≥
∫ j

N

j−1
N

|fy(x)− fỹ(x)|dx (193)

=

∫ j
N

j−1
N

∣∣∣∣fy(j − 1

N

)
− fỹ

(
j − 1

N

)
+N

(
x− j − 1

N

)(
yj − ỹj − fy

(
j − 1

N

)
+ fỹ

(
j − 1

N

))∣∣∣∣dx (194)

=

∫ j
N

j−1
N

∣∣∣∣N(x− j − 1

N

)
(yj − ỹj)

∣∣∣∣dx (195)

≥
∫ j

N

j−1
N

∣∣∣∣N(x− j − 1

N

)
E

M

∣∣∣∣dx (196)

=
E

2MN
. (197)

where in (194) we used (190), (195) follows from fy(
j−1
N

) = fỹ(
j−1
N

), and in (196) we used
|yj − ỹj| ≥ E

M
. Set M =

⌈
E

4εN

⌉
. As ε < E

4N
by assumption, we have E

4εN
> 1 and hence

M =
⌈

E
4εN

⌉
< E

2εN
, where we used dxe < 2x, for x > 1. We therefore get E

2MN
> ε, which,

owing to (191)-(197), establishes that FN,⌈ E
4εN

⌉ is an ε-packing of Σ(XN , E) with respect to the
L1([0, 1])-norm. The proof is concluded by noting that

M(ε,Σ(XN , E), L1([0, 1])) ≥
∣∣∣FN,⌈ E

4εN
⌉

∣∣∣ =
∣∣∣∣∣∣
({

ℓ

M
E

}⌈ E
4εN

⌉

ℓ=0

)N
∣∣∣∣∣∣ ≥

(⌈
E

4εN

⌉)N

. (198)

B.4 Proof of Lemma 7.3
We first need a concept closely related to fat-shattering dimension.

Definition B.2. [9, Definition 2] Let X be a set and F a class of functions from X to R.
The pseudodimension of F , written as Pdim(F), is the largest integer m for which there exists
(x1, . . . , xm, y1, . . . , ym) ∈ Xm×Rm such that for every (b1, . . . , bm) ∈ {0, 1}m, there is an f ∈ F
so that, for all i ∈ {1, . . . ,m},

f(xi)

{
> yi, if bi = 1,

≤ yi, if bi = 0.
(199)
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As condition (199) defining pseudodimension is weaker than condition (157) defining fat-
shattering dimension, we have, for all function classes F , that [16, Theorem 11.13 (i)]

fat(F , γ) ≤ Pdim(F), for γ ∈ R+. (200)

We are now ready to show how Lemma 7.3 can be proved by applying results from [9]. First, note
that [9] applies to families of network realizations whose associated configurations have a fixed
architecture, whereas N (d,W,L), the object of interest here, consists of network configurations
with different architectures. To resolve this discrepancy, we employ an idea used in the proof
of [18, Lemma A.2]. Specifically, we consider the set N ∗(d, 2W,L) = {(Aℓ, bℓ)

L
ℓ=1 : A1 ∈

R2W×d, b1 ∈ R2W , AL ∈ R1×2W , bL ∈ R, Aℓ ∈ R2W×2W , bℓ ∈ R2W , for ℓ ∈ {2, . . . , L − 1}}
consisting of all network configurations with the (fixed) architecture

(Nℓ)
L
ℓ=0 = (d, 2W, . . . ,︸ ︷︷ ︸

(L−1) times

1). (201)

The associated family of network realizations is R∗(d, 2W,L) = {R(Φ) : Φ ∈ N ∗(d, 2W,L)}. It
now follows from the proof of [18, Lemma A.2] that R(d,W,L) ⊆ R∗(d, 2W,L). Next, we note
that the network configurations in N ∗(d, 2W,L) have n(d, 2W,L) := 2dW + 4W + 1 + (L −
2)((2W )2 + 2W ) weights. As R∗(d, 2W,L) consists of realizations of network configurations
with fixed architecture, namely (201), we can apply the results in [9]. Specifically, we obtain

Pdim(R∗(d, 2W,L)) ≤Cn(d, 2W,L)L log(n(d, 2W,L)) (202)
≤C(13W 2L)L log(13W 2L) (203)
≤ 65CW 2L2(log(WL)), (204)

where C ∈ R+ is an absolute constant, in (202) we used [9, Eq. (2)] combined with the
discussion at the end of the paragraph immediately after [9, Definition 2], (203) follows from
n(d, 2W,L) ≤ 2W 2 + 4W + 1 + (L − 2)((2W )2 + 2W ) ≤ 13W 2L by the standing assumption
W ≥ d, and (204) is thanks to log(13W 2L) ≤ log((WL)5) = 5(log(WL)) as L ≥ 2. Since
R(d,W,L) ⊆ R∗(d, 2W,L), as noted above, we get

Pdim(R(d,W,L)) ≤ Pdim(R∗(d, 2W,L)) ≤ 65CW 2L2(log(WL)). (205)

To upper-bound the fat-shattering dimension of T1 ◦ R(d,W,L), we first note that T1(x) =
−1 + ρ(x+ 1)− ρ(x− 1), for x ∈ R, and hence T1 ∈ R(1, 2, 2), which upon application of [18,
Lemma H.3], yields

T1 ◦ R(d,W,L) ⊆ R(d,max{W, 2}, L+ 2) = R(d,W,L+ 2). (206)

It then follows, for all γ ∈ R+, that

fat(T1 ◦ R(d,W,L), γ) ≤Pdim(T1 ◦ R(d,W,L)) (207)
≤Pdim(R(d,W,L+ 2)) (208)
≤ 65CW 2(L+ 2)2(log(W (L+ 2))) (209)
< 520CW 2L2(log(WL)), (210)

where (207) is (200) with F = T1 ◦ R(d,W,L), (208) follows from (206), in (209) we used
(205) with L replaced by L+ 2, and (210) follows from (L+ 2)2 ≤ (2L)2 and log(W (L+ 2)) ≤
log(WL2) < 2 log(WL), recalling that L ≥ 2. The proof is concluded upon taking Ch = 520C.
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C Proof of Theorem 4.1
The proof will be effected by establishing a slightly stronger result; this is done to bet-

ter illustrate the roles of the assumptions in Theorem 4.1. Specifically, we shall replace the
assumption (78) by

inf
f∈Fn

‖g − f‖L2(P ) ≤ A, A ∈ R+, (211)

and the assumption (79) by

1

n

n∑
i=1

(f̂n(xi)− yi)
2 ≤ inf

f∈Fn

(
1

n

n∑
i=1

(f(xi)− yi)
2

)
+ κ, a.s., κ ∈ R+. (212)

With this new set of assumptions, we have the following theorem.

Theorem C.1. Let X ⊆ Rd and consider the regression function g : X 7→ R. Let n ∈ N and σ ∈
R+. Let P be a distribution on X, with the associated samples (xi, yi)

n
i=1 = (xi, g(xi) + σξi)

n
i=1,

where (xi)
n
i=1 are i.i.d. random variables of distribution P , (ξi)ni=1 are i.i.d. standard Gaussian

random variables, and (xi)
n
i=1 and (ξi)

n
i=1 are statistically independent.

Let A, κ ∈ R+, and consider a class of functions Fn ⊆ L∞(X) such that

inf
f∈Fn

‖g − f‖L2(P ) ≤ A, (213)

and an Fn-valued random variable f̂n satisfying

1

n

n∑
i=1

(f̂n(xi)− yi)
2 ≤ inf

f∈Fn

(
1

n

n∑
i=1

(f(xi)− yi)
2

)
+ κ, a.s. (214)

For all δ ∈ (0, 1/2), it holds that

E(‖f̂n − g‖2L2(P ))

≤ 16(A2 + κ) + 64(σ + δ)δ + 800(σ + σ2 + (R(g,Fn))
2)
log(N(δ,Fn, L

∞(X))) + 1

n
,

where R(g,Fn) := max{‖g‖L∞(X), supf∈Fn
‖f‖L∞(X)}.

Taking A = ε, κ = ε2, and δ = ε2, with ε ∈ (0, 1/2), in Theorem C.1 implies Theorem 4.1
with C = 800. To prepare for the proof of Theorem C.1, we state two auxiliary technical
lemmata. The first one provides an upper bound on the expected empirical risk.

Lemma C.2. Let X, P , g, n, σ, (xi, yi)
n
i=1, A, κ, Fn, and f̂n be defined as in Theorem C.1 and

assume that (213) and (214) hold. For all δ ∈ (0, 1/2), we have

E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
≤ 2(A2 + κ) + 8σδ + 100(σ + σ2)

log(N(δ, Fn, L
∞(X))) + 1

n
.

Proof. See Appendix C.1.

The second lemma relates the expected empirical risk to the expected prediction error.
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Lemma C.3. Let X, P , g, n, σ, (xi, yi)
n
i=1, A, κ, Fn, and f̂n be defined as in Theorem C.1 and

assume that (213) and (214) hold. For all δ ∈ (0, 1/2), we have

E(‖f̂n − g‖2L2(P ))

≤ 8E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
+ 64

(
(R(g,Fn))

2 log(N(δ,Fn, L
∞(X)))

n
+ δ2

)
,

where R(g,Fn) := max{‖g‖L∞(X), supf∈Fn
‖f‖L∞(X)}.

Proof. See Appendix C.2.

Putting Lemmata C.2 and C.3 together, we can now finalize the proof of Theorem C.1 as
follows:

E(‖f̂n − g‖L2(P )) (215)

≤ 8E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
+ 64

(
(R(g,Fn))

2 log(N(δ,Fn, L
∞(X)))

n
+ δ2

)
(216)

≤ 16(A2 + κ) + 64σδ + 800(σ + σ2)
log(N(δ,Fn, L

∞(X))) + 1

n

+ 64(R(g,Fn))
2 log(N(δ,Fn, L

∞(X)))
n

+ 64δ2 (217)

≤ 16(A2 + κ) + 64(σ + δ)δ + 800(σ + σ2 + (R(g,Fn))
2)
log(N(δ, Fn, L

∞(X))) + 1

n
. (218)

C.1 Proof of Lemma C.2
Arbitrarily fix f ∈ Fn. By assumption (214), we have

1

n

n∑
i=1

(f̂n(xi)− yi)
2 ≤ 1

n

n∑
i=1

(f(xi)− yi)
2 + κ, a.s. (219)

Substituting yi = g(xi) + σξi, i = 1, . . . , n, into (219), yields

1

n

n∑
i=1

(f̂n(xi)− g(xi)− σξi)
2 ≤ 1

n

n∑
i=1

(f(xi)− g(xi)− σξi)
2 + κ, a.s. (220)

which results in
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2 ≤ 1

n

n∑
i=1

(
(f(xi)− g(xi))

2 +
2σ

n
ξi(f̂n(xi)− f(xi))

)
+ κ, a.s. (221)

Taking expectations in (221) yields

E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
(222)

≤ E

(
1

n

n∑
i=1

(f(xi)− g(xi))
2

)
+

2σ

n
E

( n∑
i=1

ξi(f̂n(xi)− f(xi))

)
+ κ (223)

= ‖f − g‖2L2(P ) +
2σ

n
E

( n∑
i=1

ξi(f̂n(xi)− f(xi))

)
+ κ (224)

= ‖f − g‖2L2(P ) +
2σ

n
E

( n∑
i=1

ξi(f̂n(xi)− g(xi))

)
+ κ (225)
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where in (224) we used that, for i = 1, . . . , n, xi is a random variable of distribution P and hence
E((f(xi)−g(xi))

2) = ‖f−g‖2L2(P ), and (225) follows from adding 2σ
n
E(
∑n

i=1 ξi(f(xi)−g(xi))) =

0 to (224). As the choice of f ∈ Fn was arbitrary, (222)-(225) holds for all f ∈ Fn, and therefore

E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
≤ inf

f∈Fn

‖f − g‖2L2(P ) +
2σ

n
E

( n∑
i=1

ξi(f̂n(xi)− g(xi))

)
+ κ. (226)

With inff∈Fn ‖g − f‖L2(P ) ≤ A, owing to assumption (213), and setting

∆ =(f̂n(xi)− g(xi))
n
i=1, (227)

ξ =(ξi)
n
i=1, (228)

it follows from (226) that

E

(
‖∆‖22
n

)
≤ A2 + κ+

2σ

n
E(〈ξ,∆〉). (229)

We next note that the quantity E(〈ξ,∆〉) can be upper-bounded by the expected supremum of
a Gaussian process according to

E(〈ξ,∆〉) = E(〈ξ, (f̂n(xi)− g(xi))
n
i=1〉) ≤ E

(
sup
f∈Fn

〈ξ, (f(xi)− g(xi))
n
i=1〉
)
. (230)

The right-hand-side of (230) can be further upper-bounded either in terms of the covering
number of Fn, through one-step discretization, or by using the more advanced Dudley entropy
integral bound, see e.g. [6, Section 5.3]. The one-step discretization approach turns out to suffice
for the purposes of this proof. Specifically, let {fj}N(δ,Fn, L∞(X))

j=1 be a δ-covering of Fn, with
respect to the L∞(X)-norm, and define the associated set of random vectors {∆j}N(δ,Fn, L∞(X))

j=1

according to
∆j = (fj(xi)− g(xi))

n
i=1.

Further, define the random vector ∆p as the element in {∆j}N(δ,Fn, L∞(X))
j=1 that is closest to ∆,

in the sense of
∆p = argmin

∆j :j=1,...,N(δ,Fn, L∞(X))
‖∆−∆j‖2, (231)

and note that, a.s.,

‖∆p −∆‖2 = min
j=1,...,N(δ,Fn,L∞(X))

‖∆−∆j‖2 (232)

= min
j=1,...,N(δ,Fn,L∞(X))

( n∑
i=1

(f̂n(xi)− fj(xi))
2

)1/2

(233)

≤ min
j=1,...,N(δ,Fn,L∞(X))

n1/2‖f̂n − fj‖L∞(X) (234)

≤n1/2δ, (235)

where in (235) we used the fact that {fj}N(δ,Fn,L∞(X))
j=1 is a δ-covering of Fn with respect to the

L∞(X)-norm. We now get

E(〈ξ,∆〉) =E(〈ξ,∆−∆p〉) + E(〈ξ,∆p〉) (236)
=E(〈ξ,∆−∆p〉) + E(‖∆p‖2〈ξ, ‖∆p‖−1

2 ∆p〉) (237)

≤E(〈ξ,∆−∆p〉) +
√

E(‖∆p‖22)
√

E(〈ξ, ‖∆p‖−1
2 ∆p〉2), (238)

35



where (238) is thanks to the Cauchy-Schwarz inequality. We shall next upper-bound the terms
E(〈ξ,∆−∆p〉), E(‖∆p‖22), and E(〈ξ, ‖∆p‖−1

2 ∆p〉2), individually. First, note that

E(〈ξ,∆−∆p〉) ≤
√
E(〈ξ, ξ〉)

√
E(〈∆−∆p,∆−∆p〉) (239)

≤ nδ, (240)

where (240) follows from E(〈ξ, ξ〉) = E(
∑n

i=1 ξ
2
i ) = n and E(∆ − ∆p,∆ − ∆p〉) = E(‖∆ −

∆p‖22) ≤ nδ2 by (232)-(235). We proceed to upper-bound E(‖∆p‖22) as follows

E(‖∆p‖22) ≤E((‖∆‖2 + ‖∆p −∆‖2)2) (241)
≤E((‖∆‖2 + n1/2δ)2) (242)
≤E(2‖∆‖22 + 2(n1/2δ)2) (243)

≤ 2E(‖∆‖22) + 4
√

E(‖∆‖22)(n1/2δ) + 2(n1/2δ)2 (244)

=2
(√

E(‖∆‖22) + n1/2δ
)2
, (245)

where in (242) we again used (232)-(235) and (243) follows from (a + b)2 ≤ 2a2 + 2b2, with
a = ‖∆‖2 and b = n1/2δ. It remains to upper-bound the term E(〈ξ, ‖∆p‖−1

2 ∆p〉2). To this end,
we first note that

E(〈ξ, ‖∆p‖−1
2 ∆p〉2) ≤ E

(
max

j=1,...,N(δ,Fn, L∞(X))
〈ξ, ‖∆j‖−1

2 ∆j〉2
)
. (246)

The right-hand-side of (246) can now be further upper-bounded through the moment generating
function method. Specifically, let t ∈ (0, 1/2) be a parameter to be determined later. We have

E

(
max

j=1,...,N(δ,Fn, L∞(X))
〈ξ, ‖∆j‖−1

2 ∆j〉2
)

(247)

=
1

t
ln
(
exp
(
E
(
t max
j=1,...,N(δ,Fn, L∞(X))

〈ξ, ‖∆j‖−1
2 ∆j〉2

)))
(248)

≤ 1

t
ln
(
E
(
exp
(
t max
j=1,...,N(δ,Fn, L∞(X))

〈ξ, ‖∆j‖−1
2 ∆j〉2

)))
(249)

=
1

t
ln
(
E
(

max
j=1,...,N(δ,Fn, L∞(X))

exp(t〈ξ, ‖∆j‖−1
2 ∆j〉2)

))
(250)

≤ 1

t
ln

(
E

( ∑
j=1,...,N(δ,Fn, L∞(X))

exp(t〈ξ, ‖∆j‖−1
2 ∆j〉2)

))
(251)

=
1

t
ln

( ∑
j=1,...,N(δ,Fn, L∞(X))

E(exp(t〈ξ, ‖∆j‖−1
2 ∆j〉2))

)
, (252)

where in (249) we applied the Jensen inequality. For j = 1, . . . , N(δ, Fn, L
∞(X)), conditioned

on (xi)
n
i=1, ‖∆j‖−1

2 ∆j =
(fj(xi)−g(xi))

n
i=1

∥(fj(xi)−g(xi))ni=1∥2
is a deterministic vector of ‖ · ‖2-norm equal to 1 and

hence 〈ξ, ‖∆j‖−1
2 ∆j〉2 is a χ2 random variable with 1 degree of freedom. We therefore get

E(exp(t〈ξ, ‖∆j‖−1
2 ∆j〉2)|(xi)

n
i=1) = (1− 2t)−1/2, a.s. (253)

By the law of total expectation, it finally follows that

E(exp(t〈ξ, ‖∆j‖−1
2 ∆j〉2)) = (1− 2t)−1/2,
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for j = 1, . . . , N(δ, Fn, L
∞(X)), which together with (247)-(252) yields

E

(
max

j=1,...,N(δ,Fn, L∞(X))
〈ξ, ‖∆j‖−1

2 ∆j〉2
)

≤ 1

t
ln(N(δ, Fn, L

∞(X))(1− 2t)−1/2) (254)

=
lnN(δ, Fn, L

∞(X))
t

− ln(1− 2t)

2t
. (255)

Putting (246) and (254)-(255) with t = 1
10

together, we obtain

E(〈ξ, ‖∆p‖−1
2 ∆p〉2) ≤ lnN(δ, Fn, L

∞(X))
1/10

− ln(4/5)

1/5
≤ 10 log(N(δ, Fn, L

∞(X))) + 2. (256)

Next, we have

E

(
‖∆‖22
n

)
(257)

≤ A2 + κ+
2σ

n
E(〈ξ,∆〉) (258)

≤ A2 + κ+
2σ

n

(
E(〈ξ,∆−∆p〉) +

√
E(‖∆p‖22)

√
E(〈ξ, ‖∆p‖−1

2 ∆p〉2)
)

(259)

≤ A2 + κ+
2σ

n

(
nδ +

√
2

(√
E(‖∆‖22) + n1/2δ

)√
10 log(N(δ, Fn, L∞(X))) + 2

)
(260)

≤ A2 + κ+
2σ

n

(
nδ + 5

(√
E(‖∆‖22) + n1/2δ

)√
log(N(δ, Fn, L∞(X))) + 1

)
(261)

= A2 + κ+ 2σδ + 10σ

√
E(‖∆‖22)

n

√
log(N(δ, Fn, L∞(X))) + 1

n

+ 10σδ

√
log(N(δ, Fn, L∞(X))) + 1

n
, (262)

where (258) is (229), in (259) we used (236)-(238), and (260) follows from (239)-(240), (241)-
(245), and (256). Regarding the last two terms in (262), we note that first

10σ

√
E(‖∆‖22)

n

√
log(N(δ, Fn, L∞(X))) + 1

n

≤ E(‖∆‖22)
2n

+ 50σ2 log(N(δ, Fn, L
∞(X))) + 1

n
,

(263)

where we used ab ≤ a2+b2

2
, with a =

√
E(∥∆∥22)

n
and b = 10σ

√
log(N(δ,Fn, L∞(X)))+1

n
, and second

10σδ

√
log(N(δ, Fn, L∞(X))) + 1

n
≤ 2σδ2 +

25

2
σ
log(N(δ, Fn, L

∞(X))) + 1

n
, (264)

which again is by ab ≤ a2+b2

2
, here with a = 2σ1/2δ and b = 5σ1/2

√
log(N(δ,Fn, L∞(X)))+1

n
. Substi-

tuting (263) and (264) into (257)-(262), rearranging terms, and using δ2 ≤ δ, yields

E

(
‖∆‖22
n

)
(265)

= 2A2 + 2κ+ 4σδ + 4σδ2 + 100σ2 log(N(δ, Fn, L
∞(X))) + 1

n
(266)

+ 25σ
log(N(δ, Fn, L

∞(X))) + 1

n

≤ 2(A2 + κ) + 8σδ + 100(σ + σ2)
log(N(δ, Fn, L

∞(X))) + 1

n
. (267)

The proof is concluded upon noting that E(
∥∆∥22
n

) = E( 1
n

∑n
i=1(f̂n(xi)− g(xi))

2).

37



C.2 Proof of Lemma C.3
We start with one-step discretization [6, Section 5.3] for Fn. Let {fj}N(δ,Fn, L∞(X))

j=1 be a
δ-covering of Fn with respect to the L∞(X)-norm. Then, for each f ∈ Fn, there exists an index
j(f) ∈ {1, . . . , N(δ, Fn, L

∞(X))} such that

‖f − fj(f)‖L∞(X) ≤ δ. (268)

Next, we have, a.s.,

‖f̂n − g‖2L2(P ) =

∫
(f̂n(x)− g(x))2dP (x) (269)

≤
∫ (

2
(
f̂n(x)− fj(f̂n)(x)

)2
+ 2
(
fj(f̂n)(x)− g(x)

)2)
dP (x) (270)

=2‖f̂n − fj(f̂n)‖
2
L2(P ) + 2‖fj(f̂n) − g‖2L2(P ) (271)

≤ 2δ2 + 2‖fj(f̂n) − g‖2L2(P ), (272)

where in (270) we used (a+ b)2 ≤ 2a2+2b2, and (272) follows from (268). Taking expectations
in (269)-(272), yields

E(‖f̂n − g‖2L2(P )) ≤ 2δ2 + 2E
(
‖fj(f̂n) − g‖2L2(P )

)
. (273)

Moreover, we have

E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
(274)

≥ E

(
1

n

n∑
i=1

(
1

2

(
fj(f̂n)(xi)− g(xi)

)2 − (fj(f̂n)(xi)− f̂n(xi)
)2)) (275)

≥ 1

2
E

(
1

n

n∑
i=1

(fj(f̂n)(xi)− g(xi))
2

)
− δ2, (276)

where (275) follows from a2 ≥ 1
2
(a+ b)2− b2, with a = f̂n(xi)−g(xi) and b = fj(f̂n)(xi)− f̂n(xi),

for i = 1, . . . , n, and in (276) we used (268). We next note that

E(‖f̂n − g‖2L2(P ))− 8E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
(277)

≤ 2δ2 + 2E(‖fj(f̂n) − g‖2L2(P ))− 4E

(
1

n

n∑
i=1

(fj(f̂n)(xi)− g(xi))
2

)
+ 8δ2 (278)

= 2E

(
‖fj(f̂n) − g‖2L2(P ) −

2

n

n∑
i=1

(fj(f̂n)(xi)− g(xi))
2

)
+ 10δ2 (279)

≤ 2E

(
sup

j=1,...,N(δ,Fn, L∞(X))

(
‖fj − g‖2L2(P ) −

2

n

n∑
i=1

(fj(xi)− g(xi))
2

))
+ 10δ2, (280)

where (278) follows from (273) and (274)-(276). To simplify notation, in the following, we let

Zj,i =
(fj(xi)− g(xi))

2

4(R(g,Fn))2
, i = 1, . . . , n, j = 1, . . . , N(δ, Fn, L

∞(X)). (281)
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Next, note that, for fixed j, {Zj,i}ni=1 are i.i.d nonnegative random variables with mean

µj = E(Zj,1) =

∫
(fj(x)− g(x))2

4(R(g,Fn))2
dP (x) =

1

4(R(g,Fn))2
‖fj − g‖2L2(P ). (282)

Moreover, for j = 1, . . . , N(δ, Fn, L
∞(X)), i = 1, . . . , n, we have

Zj,i ∈ [0, 1], a.s. (283)

as a consequence of ‖fj − g‖L∞(X) ≤ ‖fj‖L∞(X) + ‖g‖L∞(X) ≤ 2R(g,Fn). We can now rewrite
(277)-(280) as

E(‖f̂n − g‖2L2(P ))− 8E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
(284)

≤ 8(R(g,Fn))
2E

(
sup

j=1,...,N(δ,Fn, L∞(X))

(
µj −

2

n

n∑
i=1

Zj,i

))
+ 10 δ2 (285)

and use the following lemma to upper-bound E(supj=1,...,N(δ,Fn, L∞(X))(µj − 2
n

∑n
i=1 Zj,i)).

Lemma C.4. Let U, V ∈ N. For j = 1, . . . , U , let {Zj,i}Vi=1 be i.i.d nonnegative random
variables of means µj and taking values in [0, 1] a.s. Then,

E

(
sup

j=1,...,U

(
µj −

2

V

V∑
i=1

Zj,i

))
≤ 8 log(U)

V
. (286)

Proof. See Section C.3.

Application of Lemma C.4 with U = N(δ, Fn, L
∞(X)), V = n, and the prerequisite satisfied

thanks to (283), yields

E

(
sup

j=1,...,N(δ,Fn, L∞(X))

(
µj −

2

n

n∑
i=1

Zj,i

))
≤ 8 log(N(δ, Fn, L

∞(X)))
n

, (287)

which together with (284)-(285) finishes the proof of Lemma C.3 according to

E(‖f̂n − g‖2L2(P ))− 8E

(
1

n

n∑
i=1

(f̂n(xi)− g(xi))
2

)
≤ 8(R(g,Fn))

28 log(N(δ, Fn, L
∞(X)))

n
+ 10δ2

≤ 64

(
(R(g,Fn))

2 log(N(δ, Fn, L
∞(X)))

n
+ δ2

)
.

We finally note that the standard upper bound on sub-Gaussian maxima, as e.g. in [6,
Exercise 2.12], would yield E(supj=1,...,U(µj − 1

V

∑V
i=1 Zj,i)) ≤ C

√
log(U)

V
, for some absolute

constant C. Identifying log(U)/V with the right-most term in the prediction error upper
bound (80) in Theorem 4.1, given by (log(N(ε2,Fn, L

∞(X))) + 1)/n, as was essentially done
above to finish the proof of Lemma C.3, we can see that as the prediction error upper bound
goes to zero, we will be in the regime log(U)/V < 1. In this case Lemma C.4 provides an upper
bound that is stronger order-wise than the standard bound on sub-Gaussian maxima. This
improvement is fundamental in our context as we will want the prediction error to approach
zero at a certain rate.
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C.3 Proof of Lemma C.4
Let

Q := sup
j=1,...,U

(
µj −

2

V

V∑
i=1

Zj,i

)
(288)

=4 sup
j=1,...,U

(
1

V

V∑
i=1

1

2
(µj − Zj,i)−

1

4
µj

)
. (289)

For j ∈ {1, . . . , U}, let
Tj,i =

1

2
(µj − Zj,i), i = 1, . . . , V, (290)

and note that, for fixed j, {Tj,i}Vi=1 are i.i.d. random variables with

E(Tj,i) = E

(
1

2

(
µj − Zj,i

))
= 0, (291)

|Tj,i| ≤
1

2
(|µj|+ |Zj,i|) ≤ 1, a.s. (292)

and variance

σ2
j =E

((
1

2
(µj − Zj,i

))2)
(293)

=
1

4
E((Z2

j,i)−
1

4
µ2
j (294)

≤ 1

4
E(Zj,i) (295)

≤ 1

4
µj, (296)

where (295) is by Zj,i ∈ [0, 1] a.s. With

S := sup
j=1,...,U

(
1

V

V∑
i=1

Tj,i − σ2
j

)
,

it follows from (293)-(296) that
Q ≤ 4S, a.s. (297)

We next upper-bound E(S) by upper-bounding its moment generating function exp(E(tS)), t ∈
(0, V ), and first note that

E(S) =
1

t
ln(exp(E(tS))) ≤ 1

t
ln(E(exp(tS))), (298)
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where we used the Jensen inequality. Next, we have

E(exp(tS)) =E

(
exp

(
t sup
j=1,...,U

(
1

V

V∑
i=1

Tj,i − σ2
j

)))
(299)

=E

(
sup

j=1,...,U
exp

(
t

(
1

V

V∑
i=1

Tj,i − σ2
j

)))
(300)

≤E

( U∑
j=1

exp

(
t

(
1

V

V∑
i=1

Tj,i − σ2
j

)))
(301)

=
U∑

j=1

E

(
exp

(
t

(
1

V

V∑
i=1

Tj,i − σ2
j

)))
(302)

=
U∑

j=1

E

(
exp(−tσ2

j )
V∏
i=1

exp

(
t

V
Tj,i

))
(303)

=
U∑

j=1

exp(−tσ2
j )

V∏
i=1

E

(
exp

(
t

V
Tj,i

))
. (304)

To upper-bound E(exp( t
V
Tj,i)), for j = 1, . . . , U , i = 1, . . . , V , we note that, for λ ∈ [0, 1),

E

(
exp

(
λTj,i

))
=E

( ∞∑
k=0

(λTj,i)
k

k!

)
(305)

=E

(
1 + λTj,i +

∞∑
k=2

(λTj,i)
k

k!

)
(306)

≤ 1 + E

( ∞∑
k=2

λk(Tj,i)
2

k!

)
(307)

=1 + E
(
T 2
j,i

) ∞∑
k=2

λk

k!
(308)

≤ 1 + σ2
jλ

2

∞∑
k=2

λk−2

2
(309)

≤ 1 +
σ2
jλ

2

2(1− λ)
(310)

≤ exp

(
σ2
jλ

2

2(1− λ)

)
, (311)

where (307) follows from |Tj,i| ≤ 1 a.s, in (310) we used
∑∞

k=0 λ
k = 1

1−λ
, for λ ∈ [0, 1), and

(311) is by 1 + x ≤ exp(x), x ∈ R. Using (305)-(311), with λ = t
V

, in (304), we obtain, for
t ∈ (0, V ),

E(exp(tS)) ≤
U∑

j=1

exp

(
−tσ2

j + V

(
σ2
j (

t
V
)2

2(1− t
V
)

))

=
U∑

j=1

exp

(
V σ2

j

(
− t

V
+

(
( t
V
)2

2(1− t
V
)

)))
,
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which, by setting t = V
2

, yields

E

(
exp

(
V

2
S

))
≤

U∑
j=1

exp

(
−
V σ2

j

4

)
≤ U. (312)

Finally, using (312) in (298), with t = V
2

, we obtain

E(S) ≤ 2 ln(U)

V
≤ 2 log(U)

V
. (313)

The proof is concluded upon noting that

E

(
sup

j=1,...,U

(
µj −

2

V

V∑
i=1

Zj,i

))
= E(Q) ≤ 4E(S) ≤ 8 log(U)

V
,

where Q ≤ 4S a.s. is by (297).

D Proof of Theorem 5.1
We prove the upper bound (137) and the lower bound (138) in Appendices D.1 and D.2,

respectively. Before delving into the proofs, we note that it suffices to consider the case s <
L(W 2 +W ) as otherwise the network would qualify as fully connected, i.e., all weights may be
nonzero, and Theorem 2.1 applies. Further, for simplicity of exposition and consistency with
Theorem 2.1, we decided to work with the quantity LW 2 throughout as opposed to L(W 2+W ),
simply by using LW 2 ≤ L(W 2 +W ) ≤ 2LW 2.

D.1 Proof of the Upper Bound (137)
The overall proof architecture is identical to that of the upper bound (3) in Theorem 2.1.

Specifically, we construct an explicit ε-covering of R(d,W,L,B, s) with elements in
R[−B,B]∩2−bZ(d,W,L,∞, s)7, where b ∈ N is a parameter suitably depending on ε and de-
termined later.

The proof requires two preparatory technical elements, the first of which, namely Lemma D.1,
is very similar to Lemma 2.3.
Lemma D.1. Let p ∈ [1,∞], d,W,L, s, b ∈ N, and B ∈ R+ with B ≥ 1. Then, the set
R[−B,B]∩2−bZ(d,W,L,∞, s) is an (L(W +1)LBL−12−b)-covering of R(d,W,L,B, s) with respect
to the Lp([0, 1]d)-norm.

Proof. Let qb : [−B,B] 7→ [−B,B] ∩ 2−bZ be defined as

qb(x) =

{
2−bb2bxc, for x ∈ [0, B],

2−bd2bxe, for x ∈ [−B, 0),

and note that |x − qb(x)| ≤ 2−b, for all x ∈ [−B,B]. Arbitrarily fix f ∈ R(d,W,L,B, s). By
definition, there exists Φ = ((Aℓ, bℓ))

L̃
ℓ=1 ∈ N (d,W,L,B, s), with L̃ ≤ L, such that R(Φ) = f .

We now quantize the weights of Φ according to8

Qb(Φ) = ((qb(Aℓ), qb(bℓ)))
L̃
ℓ=1 ∈ N[−B,B]∩2−bZ(d,W,L,∞, s),

7We note that R[−B,B]∩2−bZ(d,W,L,∞, s) = R[−B,B]∩2−bZ(d,W,L,B, s). We chose, however, to use the
notation R[−B,B]∩2−bZ(d,W,L,∞, s) for consistency with later parts of the proof involving RA(d,W,L,∞, s)
with general A ⊆ R.

8Note that N[−B,B]∩2−bZ(d,W,L,∞, s) = N[−B,B]∩2−bZ(d,W,L,B, s). We chose, however, to use the notation
R[−B,B]∩2−bZ(d,W,L,∞, s) for consistency with later parts of the proof.
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where qb acts elementwise. Here, we used the fact that, owing to qb(0) = 0, the connectivity of
Qb(Φ) is no greater than that of Φ. Next, note that

‖Φ−Qb(Φ)‖ = max
ℓ=1,...,L̃

max
{
‖Aℓ − qb(Aℓ)‖∞, ‖bℓ − qb(bℓ)‖∞

}
≤ 2−b,

which together with Lemma 2.2 yields

‖R(Φ)−R(Qb(Φ))‖L∞([0,1]d) ≤ L(W + 1)LBL−1‖Φ−Qb(Φ)‖ ≤ L(W + 1)LBL−12−b. (314)

As

‖R(Φ)−R(Qb(Φ))‖Lp([0,1]d) ≤ sup
x∈[0,1]d

|R(Φ)(x)−R(Qb(Φ))(x)| = ‖R(Φ)−R(Qb(Φ))‖L∞([0,1]p),

it follows from (314) that

‖R(Φ)−R(Qb(Φ))‖Lp([0,1]d) ≤ L(W + 1)LBL−12−b. (315)

As f ∈ R(d,W,L,B, s) was chosen arbitrarily and R(Qb(Φ)) ∈ R[−B,B]∩2−bZ(d,W,L,∞, s) ⊆
R(d,W,L,B, s), we can conclude that R[−B,B]∩2−bZ(d,W,L,∞, s) is an (L(W + 1)LBL−12−b)-
covering of R(d,W,L,B, s) with respect to the Lp([0, 1]d)-norm.

In the second preparatory step, we upper-bound the cardinality of the covering just identi-
fied, specifically we shall consider sets RA(d,W,L,∞, s) with general A and then particularize
the result to A = [−B,B] ∩ 2−bZ below.

Lemma D.2. Let d,W,L, s ∈ N, and A ⊆ R, with s ≥ max{W,L} and |A| ≥ 2. Then,

log(|RA(d,W,L,∞, s)|) ≤ log(|NA(d,W,L,∞, s)|)
≤ 5s(log(L(W + 1)) + log(|A|)).

(316)

Proof. By definition,

NA(d,W,L,∞, s)

= {(Aℓ, bℓ)
L̃
ℓ=1 ∈ N (d) : W((Aℓ, bℓ)

L̃
ℓ=1) ≤ W, L̃ ≤ L, M((Aℓ, bℓ)

L̃
ℓ=1) ≤ s, coef((Aℓ, bℓ)

L̃
ℓ=1) ⊆ A}.

There are at most
∑L

L̃=1 W
L̃ ≤ LWL different architectures (N0, . . . , NL̃)

9, L̃ ≤ L, for network
configurations in NA(d,W,L,∞, s). For a given architecture (N0, . . . , NL̃), the total number
of weights, including zero and nonzero ones, satisfies

∑L̃
ℓ=1(Nℓ Nℓ−1 + Nℓ) ≤ L(W 2 +W ) and

there are at most
s∑

i=0

(
L(W 2 +W )

i

)
≤

s∑
i=0

(L(W 2 +W ))i ≤ (L(W 2 +W ))s+1

different ways to choose the positions of the nonzero weights in the network configuration.
Finally, given an architecture and the positions of the nonzero weights, there are at most |A|s
different ways to choose these nonzero weights. It therefore follows that

|NA(d,W,L,∞, s)| ≤ LWL · (L(W 2 +W ))s+1 · |A|s, (317)
9Note that N0 = d is fixed.
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and hence

log(|NA(d,W,L,∞, s)|) (318)
≤ log(L) + L log(W ) + (s+ 1) log(L(W 2 +W )) + s log(|A|) (319)
≤ s log(L(W + 1)) + (s+ 1) log(L(W 2 +W )) + s log(|A|) (320)
≤ s log(L(W + 1)) + 4s log(L(W + 1)) + s log(|A|) (321)
≤ 5s(log(L(W + 1)) + log(|A|)). (322)

where (320) follows from log(L) + L log(W ) ≤ s log(L) + s log(W ) ≤ s log(L(W + 1)) and in
(321) we used (s + 1) ≤ 2s and L(W 2 + W ) ≤ (L(W + 1))2. The result then follows from
(318)-(322) together with |RA(d,W,L,∞, s)| ≤ |NA(d,W,L,∞, s)|.

We are now ready to prove the upper bound (137). Fix ε ∈ (0, 1/2), let

b :=

⌈
log

(
L(W + 1)LBL−1

ε

)⌉
, (323)

and note that L(W+1)LBL−12−b ≤ ε. It follows from Lemma D.1 that R[−B,B]∩2−bZ(d,W,L,∞, s)
is an ε-covering of R(d,W,L,B, s) with respect to the Lp([0, 1]d)-norm. By the minimality of
the covering number, we have

N(ε,R(d,W,L,B, s), Lp([0, 1]d)) ≤ |R[−B,B]∩2−bZ(d,W,L,∞, s)|. (324)

It then follows that

log(N(ε,R(d,W,L,B, s), Lp([0, 1]d))) (325)
≤ log(|R[−B,B]∩2−bZ(d,W,L,∞, s)|) (326)
≤ 5s(log(L(W + 1)) + log(|[−B,B] ∩ 2−bZ|)) (327)

≤ 5s

(
log(L(W + 1)) + 3 log

(
L(W + 1)LBL

ε

))
(328)

≤ 5s

(
2 log

(
(W + 1)LBL

ε

)
+ 6 log

(
(W + 1)LBL

ε

))
(329)

= 40s log

(
(W + 1)LBL

ε

)
(330)

= 40min{s, 2W 2L} log
(
(W + 1)LBL

ε

)
(331)

≤ 80min{s,W 2L} log
(
(W + 1)LBL

ε

)
. (332)

where (327) is by Lemma D.2, (328) follows from (13)-(18), and in (329) we used L(W + 1) ≤
(W + 1)L(W + 1) ≤ (W+1)2LB2L

ε2
and L(W+1)LBL

ε
≤ (W+1)2LB2L

ε2
. This concludes the proof upon

taking C = 80.

D.2 Proof of the Lower Bound (138)
Set D := 602 · 6, define the auxiliary variable

W =

⌊√
s

6L

⌋
, (333)
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and note that W ≤ W as a consequence of
√

s
6L

<
√

2W 2L
6L

< W . Further, we have W =⌊√
s
6L

⌋
≥
⌊√

Dd2L
6L

⌋
=

⌊√
602·6·d2L

6L

⌋
= 60d ≥ max{60, d}. It now follows from W ≤ W that

R(d,W,L,B, s) ⊆ R(d,W,L,B, s). (334)

As 2W
2
L = 2b

√
s
6L
c2L ≤ 2 · s

6L
· L < s, we can conclude that

R(d,W,L,B, s) = R(d,W,L,B). (335)

Combining (334) and (335), we obtain the inclusion

R(d,W,L,B) ⊆ R(d,W,L,B, s),

which, thanks to (441) in Lemma F.1, yields

N(ε,R(d,W,L,B, s), Lp([0, 1]d)) ≥ N(2ε,R(d,W,L,B), Lp([0, 1]d)). (336)

Application of (4) in Theorem 2.1 with W replaced by W , ε replaced by 2ε, and the prerequisites
satisfied owing to W ≥ max{60, d}, L ≥ 60, and 2ε ∈ (0, 1/2), yields a lower bound on the
right-hand-side of (336) according to

log(N(2ε,R(d,W,L,B), Lp([0, 1]d))) ≥ c1W
2
L log

(
(W + 1)LBL

2ε

)
, (337)

with c1 ∈ R+ an absolute constant. We can now further lower-bound the right-hand-side of
(337) according to

c1W
2
L log

(
(W + 1)LBL

2ε

)
(338)

≥ c1
24

s log

(
(W + 1)LBL

2ε

)
(339)

>
c1
48

s log

(
(W + 1)LBL

ε

)
(340)

=
c1
48

min{s, 2W 2L} log
(
(W + 1)LBL

ε

)
(341)

≥ c1
48

min{s,W 2L} log
(
(W + 1)LBL

ε

)
, (342)

where (339) follows from W
2
L = b

√
s
6L
c2L ≥ (1

2

√
s
6L
)2L ≥ 1

24
s, as bxc ≥ 1

2
x, for x ≥ 1, and

(340) is by log( (W+1)LBL

2ε
) = 1

2
log( (W+1)2LB2L

4ε2
) > 1

2
log( (W+1)LBL

ε
), since ε ∈ (0, 1

4
). To replace

W in (342) by W̃ = min{d
√

s
L
e,W}, we note that

(W + 1)2 =(W + 1) ·
(⌊√

s

6L

⌋
+ 1

)
(343)

≥ 61 ·
⌈√

s

6L

⌉
(344)

> 10

√
s

L
(345)

>

⌈√
s

L

⌉
+ 1 (346)

≥ W̃ + 1, (347)
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where in (344) we used W ≥ 60. Using (343)-(347), we get

log

(
(W + 1)LBL

ε

)
=

1

2
log

(
(W + 1)2LB2L

ε2

)
≥ 1

2
log

(
(W̃ + 1)LBL

ε

)
. (348)

Putting (336), (338)-(342), and (348) together, we obtain

log(N(ε,R(d,W,L,B, s), Lp([0, 1]d))) ≥ c1
96

min{s,W 2L} log
(
(W̃ + 1)LBL

ε

)
, (349)

which concludes the proof upon setting c = c1
96

.

E Proof of the Lower Bound (140) in Theorem 6.1
The proof of the lower bound (140) relies on several technical ingredients, which we present

first. We start with a result that allows to reduce the general case a ∈ N to a = 1.

Lemma E.1. Let d,W,L, a, b ∈ N, with W ≥ 2. We have

Ra
b (d,W,L) = 2(a−1)L · R1

a+b−1(d,W,L) (350)
= {2(a−1)L · f : f ∈ R1

a+b−1(d,W,L)}, (351)

and, for all ε ∈ R+, p ∈ [1,∞],

N(ε,Ra
b (d,W,L), Lp([0, 1]d)) = N

(
ε

2(a−1)L
,R1

a+b−1(d,W,L), Lp([0, 1]d)

)
. (352)

Proof. We start by establishing (350). Arbitrarily fix g ∈ Ra
b (d,W,L). From Lemma F.2, with

its prerequisite satisfied thanks to {−1, 0, 1} ⊆ Qa
b , we can infer the existence of a network

configuration Φ = (Aℓ, bℓ)
L
ℓ=1, with W(Φ) ≤ W and coef(Φ) ∈ Qa

b , such that R(Φ) = g. Define
Φ̃ = ( 1

2a−1Aℓ,
1

2a−1 bℓ)
L
ℓ=1, and note that W(Φ̃) ≤ W , L(Φ̃) = L, and coef(Φ̃) ⊆ 1

2a−1Qa
b = Q1

b+a−1,
and therefore R(Φ̃) ∈ R1

a+b−1(d,W,L). We then have

g =R(Φ) (353)
=S(AL, bL) ◦ ρ ◦ · · · ◦ ρ ◦ S(A1, b1) (354)

=(2(a−1))LS

(
1

2a−1
AL,

1

2a−1
bL

)
◦ ρ ◦ · · · ◦ ρ ◦ S

(
1

2a−1
A1,

1

2a−1
b1

)
(355)

=2(a−1)L ·R(Φ̃) (356)
∈{2(a−1)L · f : f ∈ R1

a+b−1(d,W,L)}, (357)

where in (355) we used the positive homogeneity of the ReLU function, namely, ρ(kx) = kρ(x)
for all x ∈ R and k ∈ R+. As the choice of g ∈ Ra

b (d,W,L) was arbitrary, we have established
that

Ra
b (d,W,L) ⊆ 2(a−1)L · R1

a+b−1(d,W,L). (358)
Upon noting that the reverse inclusion can be proved similarly, (350) follows.

We proceed to prove (352). Fix ε ∈ R+ and p ∈ [1,∞]. It follows from (350) that, for every
ε-covering C of Ra

b (d,W,L) with respect to the Lp([0, 1]d)-norm, 1
2(a−1)L · C is an ε

2(a−1)L -covering
of R1

a+b−1(d,W,L), which allows us to conclude that

N(ε,Ra
b (d,W,L), Lp([0, 1]d)) ≥ N

(
ε

2(a−1)L
,R1

a+b−1(d,W,L), Lp([0, 1]d)

)
. (359)
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Moreover, based on (350), we can also conclude that, for every ε
2(a−1)L -covering C of R1

a+b−1(d,W,L)

with respect to the Lp([0, 1]d)-norm, 2(a−1)L · C is an ε-covering of Ra
b (d,W,L), which leads to

N

(
ε

2(a−1)L
,R1

a+b−1(d,W,L), Lp([0, 1]d)

)
≥ N(ε,Ra

b (d,W,L), Lp([0, 1]d)). (360)

Combining (359) and (360), yields (352).
We note that the constraint W ≥ 2 in Lemma E.1 is not restrictive for the purposes of

the proof of the lower bound in Theorem 6.1 as below we will take the absolute constant D in
Theorem 6.1 to be greater than 2.

Next, we derive lower bounds on the covering number, separately, for large and moderate
values of b. We start with the case of large b.
Lemma E.2. Let p ∈ [1,∞] and d,W,L, b ∈ N, with W,L ≥ 60. Assume that b > log(L) +
L log(W + 1) + 3. Then, there exist absolute constants c1, c2, c3 ∈ R+ such that the following
statements hold:

• For all ε ∈ (0, L(W + 1)L2−b],

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ c1W

2Lb. (361)

• If L(W + 1)L2−b < 1
32

, then, for all ε ∈ (L(W + 1)L2−b, 1
32
),

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ c2W

2L log

(
(W + 1)L

ε

)
. (362)

• For all ε ∈ (0, 1
32
),

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ c3W

2L ·min

{
b, log

(
(W + 1)L

ε

)}
. (363)

Proof. We start with the proof of (361). It follows from Lemma 2.3 with B = 1 that

A(R(d,W,L, 1),R[−1,1]∩2−bZ(d,W,L), ‖ · ‖Lp([0,1]d)) ≤ L(W + 1)L2−b. (364)

As ([−1, 1]∩ 2−bZ) ⊆ ((−4, 4)∩ 2−bZ) = Q1
b , we have R[−1,1]∩2−bZ(d,W,L) ⊆ R1

b(d,W,L) which
together with (364) yields

A(R(d,W,L, 1),R1
b(d,W,L), ‖ · ‖Lp([0,1]d))

≤ A(R(d,W,L, 1),R[−1,1]∩2−bZ(d,W,L), ‖ · ‖Lp([0,1]d))

≤ L(W + 1)L2−b.

(365)

Application of Proposition 3.1 with δ = ‖ · ‖Lp([0,1]d), G = R(d,W,L, 1), F = R1
b(d,W,L),

ε = L(W + 1)L2−b, and the prerequisite (39) satisfied thanks to (365), yields

N(L(W + 1)L2−b,R1
b(d,W,L), Lp([0, 1]d))

≥ N(4L(W + 1)L2−b,R(d,W,L, 1), Lp([0, 1]d)).
(366)

The right-hand-side of (366) can be lower-bounded by application of (4) in Theorem 2.1 with
B = 1, upon noting that the prerequisites are satisfied thanks to W,L ≥ 60 by assumption,
and 4L(W + 1)L2−b < 4L(W + 1)L2−(log(L)+L log(W+1)+3) ≤ 1/2. Specifically, we obtain

log(N(4L(W + 1)L2−b,R(d,W,L, 1), Lp([0, 1]d))) ≥ c4W
2L log

(
(W + 1)L

4L(W + 1)L2−b

)
= c4W

2L log

(
1

L2−b+2

)
,

(367)
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with c4 ∈ R+ an absolute constant. We note that

log

(
1

L2−b+2

)
=

b

4
+

(
3b

4
− 2− log(L)

)
(368)

>
b

4
+

(
3

4
(log(L) + L log(W + 1) + 3)− 2− log(L)

)
(369)

>
b

4
+

(
3

4
(2 log(L) + 3)− 2− log(L)

)
(370)

>
b

4
, (371)

where (369) follows from the assumption b > log(L) + L log(W + 1) + 3, and in (370) we used
L log(W + 1) ≥ L > log(L), for L ≥ 60. Putting (366), (367), and (368)-(371) together yields

log(N(L(W + 1)L2−b,R1
b(d,W,L), Lp([0, 1]d))) ≥ c4

4
W 2Lb.

As the covering number is a non-decreasing function of the covering ball radius ε, we have

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ c4

4
W 2Lb, for all ε ∈ (0, L(W + 1)L2−b]. (372)

Upon setting c1 =
c4
4

, this finalizes the proof of (361).
We proceed to the proof of (362). Arbitrarily fix ε ∈ (L(W + 1)L2−b, 1

32
) and let

b̃ :=

⌊
log

(
L(W + 1)L

2ε

)⌋
. (373)

We first note that
b̃ ≤

⌊
log

(
L(W + 1)L

2L(W + 1)L2−b

)⌋
= blog(2b−1)c ≤ b, (374)

which leads to the inclusion R1
b̃
(d,W,L) ⊆ R1

b(d,W,L). Thanks to Lemma F.1, we hence get

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ log(N(2ε,R1

b̃
(d,W,L), Lp([0, 1]d))). (375)

To lower-bound the right-hand-side of (375), we apply (372) with b replaced by b̃, ε replaced
by 2ε, the prerequisite b̃ > log(L) + L log(W + 1) + 3 satisfied owing to

b̃ > log(L) + L log(W + 1) + log

(
1

2ε

)
− 1 (376)

> log(L) + L log(W + 1) + log

(
1

2 · 1
32

)
− 1 (377)

= log(L) + L log(W + 1) + 3, (378)

and the prerequisite 2ε ∈ (0, L(W + 1)L2−b̃] satisfied thanks to

2ε = L(W + 1)L2− log(
L(W+1)L

2ε
) ≤ L(W + 1)L2−b̃, (379)

to obtain
log(N(2ε,R1

b̃
(d,W,L), Lp([0, 1]d))) ≥ c4

4
W 2Lb̃. (380)
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We further note that

b̃ =

⌊
log

(
L(W + 1)L

2ε

)⌋
(381)

≥ log

(
L(W + 1)L

2ε

)
− 1 (382)

≥ 1

2
log

(
L(W + 1)L

2ε

)
, (383)

>
1

2
log

(
(W + 1)L

ε

)
, (384)

where in (383) we used log(L(W+1)L

2ε
) ≥ log(60(61)

61

2 1
32

) > 2 as W,L ≥ 60 and ε < 1
32

, both by
assumption, and (384) follows from L ≥ 60. Using the lower bound (381)-(384) in (380), results
in log(N(2ε,R1

b̃
(d,W,L), Lp([0, 1]d))) ≥ c4

8
W 2L log( (W+1)L

ε
), which together with (375) yields

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ c4

8
W 2L log

(
(W + 1)L

ε

)
. (385)

As ε was chosen arbitrarily in (L(W + 1)L2−b, 1
32
), (385) concludes the proof of (362) upon

setting c2 =
c4
8

.
It remains to establish (363). To this end, we first consider the case L(W +1)L2−b ≥ 1

32
. It

follows from (361) that

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ c1W

2Lb, for ε ∈ (0, 1/32] ⊆ (0, L(W + 1)L2−b].

For L(W + 1)L2−b < 1
32

, we obtain from (361) and (362) that

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥


c1W

2Lb, for ε ∈ (0, L(W + 1)L2−b],

c2W
2L log

((W + 1)L

ε

)
, for ε ∈

(
L(W + 1)L2−b,

1

32

)
.

Combining these results, we obtain, for ε ∈ (0, 1
32
),

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ min

{
c1W

2Lb, c2W
2L log

(
(W + 1)L

ε

)}
≥ min{c1, c2}W 2L ·min

{
b, log

(
(W + 1)L

ε

)}
,

which, upon setting c3 = min{c1, c2}, concludes the proof.

We continue with the case of moderate b. A key ingredient here is the depth-precision
tradeoff developed in [18], formalized as follows.

Lemma E.3. Let d,W,L, k ∈ N. For all a, b ∈ N, it holds that

Rka
kb (d,W,L) ⊆ Ra

b (d, 16W, (k + 2)L). (386)

Proof. The case d = 1 is [18, Proposition 4.1]. The proof for general d is structurally identical
to that of [18, Proposition 4.1] and is provided, for completeness, in Appendix E.1.

The lower bound on the covering number of R1
b(d,W,L), for moderate values of b, is as

follows.

49



Lemma E.4. Let p ∈ [1,∞], d,W,L, b ∈ N, with W,L ≥ 960. Assume that 72000 log(W )
L

< b ≤
4L log(W ). Then, we have

log(N(ε,R1
b(d,W,L), Lp([0, 1]d))) ≥ cW 2Lb, for all ε ∈

(
0,

1

100

)
, (387)

with c ∈ R+ an absolute constant.

Proof. Let k ∈
{
2, . . . , b L

60
c−2

}
be an integer to be determined later. Application of Lemma E.3

with a = 1, W replaced by bW/16c, and L replaced by bL/(k + 2)c, yields

Rk
kb(d, bW/16c, bL/(k + 2)c) ⊆ R1

b(d, 16bW/16c, (k + 2)bL/(k + 2)c). (388)

As k ≥ 2, we have the inclusion relation

R1
kb(d, bW/16c, bL/(k + 2)c) ⊆ Rk

kb(d, bW/16c, bL/(k + 2)c). (389)

Noting that 16bW/16c ≤ W and (k + 2)bL/(k + 2)c ≤ L, it follows that

R1
b(d, 16bW/16c, (k + 2)bL/(k + 2)c) ⊆ R1

b(d,W,L). (390)

Combining (389) and (390) with (388), we obtain

R1
kb(d, bW/16c, bL/(k + 2)c) ⊆ R1

b(d,W,L). (391)

Application of (441) in Lemma F.1 to the inclusion relation (391) then yields, for all ε ∈ R+,

N(ε,R1
b(d,W,L), Lp([0, 1]d)) ≥ N(2ε,R1

kb(d, bW/16c, bL/(k + 2)c), Lp([0, 1]d)). (392)

We next lower-bound the covering number of R1
kb(d, bW/16c, bL/(k+2)c) to get a lower bound

on the covering number of R1
b(d,W,L). To this end, we identify a value of k ∈

{
2, . . . , b L

60
c−2

}
that allows us to apply Lemma E.2 to R1

kb(d, bW/16c, bL/(k + 2)c). This is done as follows.
Define f : R+ 7→ R as f(x) = xb − 5L

x
log(W ), and note that f is strictly increasing on its

domain and satisfies

f(1) = b− 5L log(W ) < 0, (393)

f

(⌊
L

60

⌋
− 2

)
>f

(
L

120

)
(394)

=
L

120
b− 5

L
L
120

log(W ) (395)

=
1

120
(Lb− 72000 log(W )) (396)

> 0. (397)

Here, in (393) we used the assumption b ≤ 4L log(W ), (394) follows from b L
60
c − 2 > L

60
− 3 ≥

L
60
− 1

320
L > L

120
, as L ≥ 960, and in (397) we invoked the assumption b > 72000 log(W )

L
. We now

choose k ∈
{
2, . . . , b L

60
c − 2

}
to be the unique integer such that f(k − 1) < 0 and f(k) ≥ 0,

namely,

(k − 1)b− 5
L

k − 1
log(W ) < 0 (398)

kb− 5
L

k
log(W ) ≥ 0. (399)
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For this k, we now lower-bound the covering number of R1
kb(d, bW/16c, bL/(k+2)c) by applying

Lemma E.2 with b replaced by kb, W replaced by bW/16c, and L replaced by bL/(k + 2)c.
We first verify the prerequisites of Lemma E.2 by noting that bW/16c ≥ b960/16c = 60, bL/
(k + 2)c ≥ bL/(b L

60
c − 2 + 2

)
c ≥ 60, and

kb ≥ 5
L

k
log(W ) (400)

≥ L

k
log(W ) +

L

k
log(W ) + 3

L

b L
60
c − 2

log(W ) (401)

≥ log(bL/(k + 2)c) + bL/(k + 2)c log(bW/16c+ 1) + 3, (402)

where (401) follows from k ∈
{
2, . . . , b L

60
c−2

}
, and in (402) we used L

k
log(W ) ≥ bL/(k+2)c ≥

log(bL/(k + 2)c), L
k
log(W ) ≥ bL/(k + 2)c log(bW/16c + 1), and L

⌊ L
60

⌋−2
log(W ) ≥ 1. Then,

application of (363) in Lemma E.2 with ε = 1
50

, yields

log(N(1/50,R1
kb(d, bW/16c, bL/(k + 2)c), Lp([0, 1]d))) (403)

≥ c3(bW/16c)2bL/(k + 2)c) ·min

{
kb, log

(
(bW/16c+ 1)⌊L/(k+2)⌋

1/50

)}
, (404)

with c3 ∈ R+ an absolute constant. To lower-bound the right-hand-side of (404), we note that

bW/16c ≥ 1

2
· W
16

=
W

32
, (405)

bL/(k + 2)c ≥ bL/(4k)c ≥ L

8k
, (406)

and

log

(
(bW/16c+ 1)⌊L/(k+2)⌋

1/50

)
≥ bL/(k + 2)c log(bW/16c+ 1) (407)

≥bL/(k + 2)c log(W/16) (408)

≥ 1

16

L

k − 1
log(W ) (409)

>
1

80
(k − 1)b (410)

≥ 1

160
kb, (411)

where in (409) we used bL/(k + 2)c ≥ 1
2
· L/(k + 2) ≥ 1

8
L

k−1
and log(W/16) ≥ 1

2
log(W ), (410)

follows from (398), and (411) is thanks to k ≥ 2. Then, using (405), (406), and (407)-(411) in
(403)-(404), yields

log(N(1/50,R1
kb(d, bW/16c, bL/(k + 2)c), Lp([0, 1]d))) (412)

≥ c3

(
W

32

)2(
L

8k

)
min

{
kb,

1

160
kb

}
(413)

=
c3

322 · 8 · 160
W 2Lb. (414)

As the covering number is non-decreasing in ε, we have shown that, for all ε ∈ (0, 1
100

),

log(N(2ε,R1
kb(d, bW/16c, bL/(k + 2)c), Lp([0, 1]d))) ≥ c3

322 · 8 · 160
W 2Lb. (415)

We conclude the proof by putting (392) and (415) together and setting c = c3
322·8·160 .
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We are now ready to proceed to the proof of the lower bound (140). Let D := 960 and
E := 2 · 105 and arbitrarily fix an ε ∈ (0, 1

100
). By assumption, we hence have W ≥ D ≥ 960,

L ≥ D ≥ 960, and
L(a+ b) ≥ E log(W ) = 2 · 105 log(W ). (416)

It follows from (352) in Lemma E.1 that

N(ε,Ra
b (d,W,L), Lp([0, 1]d)) = N

(
ε

2(a−1)L
, R1

a+b−1(d,W,L), Lp([0, 1]d)

)
. (417)

We proceed by distinguishing two cases, the first one being

(a+ b− 1) > log(L) + L log(W + 1) + 3. (418)

Then, it follows from (363) in Lemma E.2 with ε replaced by ε
2(a−1)L , b replaced by a + b − 1,

and the prerequisite (a+ b− 1) > log(L) +L log(W +1)+ 3 satisfied thanks to (418), that, for
ε

2(a−1)L ∈ (0, 1
100

),

log

(
N

(
ε

2(a−1)L
,R1

a+b−1(d,W,L), Lp([0, 1]d)

))
(419)

≥ c1W
2L ·min

{
(a+ b− 1), log

(
(W + 1)L2(a−1)L

ε

)}
, (420)

with c1 ∈ R+ an absolute constant. The second case is

(a+ b− 1) ≤ log(L) + L log(W + 1) + 3. (421)

Using a+b−1 ≥ 1
2
(a+b) in (416) and log(L)+L log(W+1)+3 < L+L log(W 2)+L < 4L log(W )

in (421), yields

72000
log(W )

L
< 100000

log(W )

L
≤ (a+ b− 1) < 4L log(W ). (422)

Now, application of Lemma E.4 with ε replaced by ε
2(a−1)L , b replaced by a+b−1, the prerequisite

72000 log(W )
L

< a+ b− 1 ≤ 4L log(W ) satisfied thanks to (422), yields, for ε
2(a−1)L ∈ (0, 1

100
),

log

(
N

(
ε

2(a−1)L
,R1

a+b−1(d,W,L), Lp([0, 1]d)

))
(423)

≥ c2W
2L(a+ b− 1) (424)

≥ c2W
2L ·min

{
(a+ b− 1), log

(
(W + 1)L2(a−1)L

ε

)}
, (425)

with c2 ∈ R+ an absolute constant. Combining (419)-(420) and (423)-(425), yields, for all
a, b ∈ N,

log

(
N

(
ε

2(a−1)L
,R1

a+b−1(d,W,L), Lp([0, 1]d)

))
≥ min{c1, c2}W 2L ·min

{
(a+ b− 1), log

(
(W + 1)L2(a−1)L

ε

)}
.

(426)
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Using

(a+ b− 1) ≥ 1

2
(a+ b), (427)

log

(
(W + 1)L2(a−1)L

ε

)
=

1

2
log

(
(W + 1)2L22(a−1)L

ε2

)
(428)

≥ 1

2
log

(
(W + 1)2L2(a−1)L

ε2

)
(429)

≥ 1

2
log

(
(W + 1)L2aL

ε

)
, (430)

together with (417) in (426), yields

log
(
N(ε,Ra

b (d,W,L), Lp([0, 1]d))
)
≥ min{c1, c2}

2
W 2L ·min

{
(a+ b), log

(
(W + 1)L2aL

ε

)}
.

The proof is concluded upon setting c = min{c1,c2}
2

.

E.1 Proof of Lemma E.3
We first state the following technical lemma.

Lemma E.5. [18, Proposition F.1] Let d,W,L ∈ N, and let A ⊆ R be a finite set satisfying
{−1, 0, 1} ⊆ A. Then, for every k ∈ N and all u, v ∈ A ∩ R≥0, it holds that

RT1(A,u,v,k)(d,W,L) ⊆ RA(d, 16W, (k + 3)L)

with

T1(A, u, v, k) :=
{ k∑

i=0

(uiαi + viβi) : |αi|, |βi| ∈ A, i = 0, . . . , k

}
. (431)

We are now ready to prove Lemma E.3. For k = 1, (386) is trivially satisfied. For k ≥ 2,
we note that

T1(Qa
b , 2

−b, 2a, k − 1) (432)

=

{
k−1∑
i=0

(2−biαi + 2aiβi) : |αi|, |βi| ∈ Qa
b , i = 0, . . . , k − 1

}
(433)

=

{
k−1∑
i=0

(2−biαi + 2aiβi) : αi, βi ∈ Qa
b , i = 0, . . . , k − 1

}
(434)

⊇

{
±

ka∑
i=−kb

2ici : ci ∈ {0, 1}

}
(435)

= Qka
kb , (436)

where in (435) we used Qa
b = {±

∑a
i=−b θi2

i : θi ∈ {0, 1}}. Thanks to (432)-(436), we have

Rka
kb (d,W,L) ⊆ RT1(Qa

b ,2
−b,2a,k−1)(d,W,L). (437)

Application of Lemma E.5 with u = 2−b, v = 2a, A = Qa
b , and k replaced by k − 1, yields

RT1(Qa
b ,2

−b,2a,k−1)(d,W,L) ⊆Ra
b (d, 16W, (k + 2)L). (438)

The proof is finalized by combining (437) and (438) to obtain (386).

53



F Auxiliary results
F.1 Relation Between Covering Number and Packing Number

The following lemma on covering and packing numbers is frequently used throughout this
paper.
Lemma F.1. Let (X , δ) be a metric space and ε ∈ R+. It holds that

M(2ε,X , δ) ≤ N(ε,X , δ) ≤ M(ε,X , δ). (439)
Let Y ⊆ X . We have,

M(ε,X , δ) ≥M(ε,Y , δ), (440)
N(ε,X , δ) ≥N(2ε,Y , δ), (441)

Proof. Relation (439) is [6, Lemma 5.5]. To prove (440), we simply note that every ε-packing
of Y is also an ε-packing of X , and hence

M(ε,X , δ) ≥ M(ε,Y , δ). (442)
Then, (441) follows from N(ε,X , δ) ≥ M(2ε,X , δ) ≥ M(2ε,Y , δ) ≥ N(2ε,X , δ), where the first
and the last inequalities are by (439) and the second by (442).

F.2 Augmenting Networks
This section is concerned with a technical lemma, which shows how a ReLU network of a

given depth can be augmented to a deeper network while retaining its input-output relation.
Lemma F.2. Let d,W,L ∈ N, with W ≥ 2, and let A ⊆ R, with {−1, 0, 1} ⊆ A. For every
f ∈ RA(d,W,L), there exists a network configuration Φ ∈ NA(d,W,L) such that L(Φ) = L and
R(Φ) = f .

A special case of Lemma F.2, namely A = R, is documented in [18, Lemma H.2]. The
proof of Lemma F.2 is almost identical to that of [18, Lemma H.2], but will be provided for
completeness.

Proof of Lemma F.2. By definition, there exists a network configuration Φ̃ = ((Ãℓ, b̃ℓ))
L̃
ℓ=1 ∈

NA(d,W,L), with L̃ ≤ L, such that R(Φ̃) = f . If L̃ = L, setting Φ = Φ̃, we have L(Φ) = L

and R(Φ) = f . For L > L̃, we let Φ := ((Aℓ, bℓ))
L
ℓ=1, with

(Aℓ, bℓ) := (Ãℓ, b̃ℓ), for 1 ≤ ℓ < L̃, 10 (443)

AL̃ :=

(
ÃL̃

−ÃL̃

)
, bL̃ :=

(
b̃L̃
−b̃L̃

)
, Aℓ := I2, bℓ := 02, for ℓ such that L̃ < ℓ < L, and AL :=

(1 −1), bL := 0. Invoking the assumption {−1, 0, 1} ⊆ A, this yields Φ ∈ NA(d,W,L), with
L(Φ) = L. We now note that

S(AL, bL) ◦ ρ ◦ · · · ◦ ρ ◦ S(AL̃, bL̃) =S(AL, bL) ◦ ρ ◦ S(AL̃, bL̃) (444)
=S(ÃL̃, b̃L̃), (445)

where in (444) we used ρ◦S(Aℓ, bℓ) = ρ◦S(I2, 02) = ρ, for L̃ < ℓ < L, and ρ◦ρ = ρ, and (445) is
by
(
S(AL, bL) ◦ ρ ◦ S(AL̃, bL̃)

)
(x) = ρ(ÃL̃x+ b̃L̃)− ρ(−ÃL̃x− b̃L̃) = ÃL̃x+ b̃L̃ = S(ÃL̃, b̃L̃)(x),

for x ∈ Rd′ , with d′ denoting the number of columns of ÃL̃. Combining (444)-(445) and (443),
we see that R(Φ) = R(Φ̃) = f .

10Here and in what follows, we use the convention that if there does not exist an ℓ, in this case, satisfying the
constraint, the assignment is skipped; in the present case, this would apply if L̃ = 1.

54



F.3 Existence of the Empirical Risk Minimizer in (83)
Arbitrarily fix a sample (xi, yi)

n
i=1 ∈ ([0, 1] × R)n. The existence of the empirical risk

minimizer, for this fixed sample, is equivalent to the existence of a network configuration
Φ ∈ N (1, dD + 1e, L(n), 1) whose associated truncated realization T1(R(Φ)) minimizes the
empirical risk. Noting that the set N (1, dD + 1e, L(n), 1) can be written as a finite disjoint
union of network configurations, each element in the union corresponding to a given network
architecture, we only have to show the existence of a minimizer over each given element in this
union. Arbitrarily fix an element in the union with associated architecture (N0, . . . , Nℓ) and
let NN0,...,Nℓ

be the corresponding set of network configurations. Next, note that NN0,...,Nℓ
=

[−1, 1]
∑ℓ

i=1(NiNi−1+Ni) is a compact set and, by Lemma 2.2, the mapping Φ ∈ NN0,...,Nℓ
7→

1
n

∑n
i=1(T1(R(Φ)(xi)) − yi)

2 is continuous. As continuous functions on compact sets attain
minima, there exists a Φ ∈ NN0,...,Nℓ

that minimizes the empirical risk within the set NN0,...,Nℓ
,

as was to be shown. The argument is concluded by noting that the choice of the sample
(xi, yi)

n
i=1 ∈ ([0, 1] × R)n was arbitrary and hence there exists an empirical risk minimizer for

each sample (xi, yi)
n
i=1 ∈ ([0, 1]× R)n.
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