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Abstract

This paper is concerned with the fundamental limits of nonlinear dynamical system learning from

input-output traces. Specifically, we show that recurrent neural networks (RNNs) are capable of learning

nonlinear systems that satisfy a Lipschitz property and forget past inputs fast enough in a metric-

entropy optimal manner. As the sets of sequence-to-sequence maps realized by the dynamical systems we

consider are significantly more massive than function classes generally considered in deep neural network

approximation theory, a refined metric-entropy characterization is needed, namely in terms of order, type,

and generalized dimension. We compute these quantities for the classes of exponentially-decaying and

polynomially-decaying Lipschitz fading-memory systems and show that RNNs can achieve them.

This paper is dedicated to Professor Andrew R. Barron on the occasion of his 65th birthday.

I. INTRODUCTION

It is well known that neural networks can approximate almost any function arbitrarily well [1]–[5]. The
recently developed Kolmogorov-Donoho rate-distortion theory for deep neural network approximation [6],
[7] goes a step further by quantifying how effective such approximations are in terms of the description
complexity of the networks relative to that of the functions they are to approximate. Specifically, [7]
considers classes of functions mapping Rd to R and aims at approximating every function in a given
class to within a prescribed error ϵ using a (deep) rectified linear unit (ReLU) network. Moreover, the
length of the bitstring specifying the approximating network is characterized. Now, [7] establishes that
for a wide variety of function classes, the length of this bitstring exhibits the same scaling behavior, in
ϵ, as the metric entropy of the function class under consideration (see Table I below). This means that
neural networks are universally Kolmogorov-Donoho optimal for all these function classes.

In the present paper, we extend the philosophy of [7] to the approximation of nonlinear sequence-
to-sequence mappings through recurrent neural networks (RNNs). Specifically, we consider Lipschitz
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fading-memory (LFM) systems. In essence, this notion describes systems that gradually forget long-past
inputs, with the speed of memory decay quantified in terms of a certain Lipschitz property. Such systems
find diverse applications, inter alia, in finance [8] and material science [9]–[11]. We first develop tools
for quantifying the metric entropy of classes of LFM systems with a given memory decay rate. A general
construction of RNNs approximating LFM systems is shown to yield Kolmogorov-Donoho-optimality
for LFM systems of exponentially or polynomially decaying memory.

Related work. Learning of linear dynamical systems has been studied extensively in the literature [12]–
[16]. Notably, [16] provides explicit RNN constructions for a wide class of linear dynamical systems,
including time-varying systems. Going beyond linear systems, learning of nonlinear finite memory systems
within the finite-state-machine framework has been studied in [17]. More concretely, [17] explores the
learning of finite-state finite-memory machines using RNNs. This program is extended to approximately
finite-memory systems in [18] and fading-memory systems in [19]–[21]. In particular, [21] formalizes the
concept of fading-memory systems in control theory, demonstrating that continuous-time fading-memory
operators can be approximated using Volterra series. Subsequently, [22] established that discrete-time
fading-memory systems can be identified using neural networks. Moreover, [23] demonstrated that echo
state networks, a specialized architecture within the RNN family, serve as universal approximators for
discrete-time fading-memory systems. None of the studies just reviewed formally addresses the issue of
quantifying the RNN description complexity relative to that of the class of (nonlinear) systems they are
to learn.

Organization of the paper. The remainder of Section I summarizes notation. In Section II, we introduce
our setup and provide a definition of metric-entropy optimality in a very general context encompassing the
approximation of functions as well as dynamical systems. Section III develops tools for characterizing the
metric entropy of LFM systems. In Section IV, we employ these tools to derive precise scaling results
for the metric entropy of exponentially Lipschitz fading-memory (ELFM) and polynomially Lipschitz
fading-memory (PLFM) systems. Section V presents a construction for the approximation of general
LFM systems by RNNs. Finally, in Section VI, we combine the results developed in the previous sections
to prove that RNNs can learn ELFM and PLFM systems in a metric-entropy-optimal manner.

Notation. For N ∈ N, JNK stands for the set {0, 1, . . . , N}, while JNK± denotes the set
{−N . . . ,−1, 0, 1, . . . , N}. The cardinality of a finite set U is designated by |U |. Sequences x[t] ∈ R
are indexed by t ∈ Z or t ∈ N and we use RZ and RN to respectively denote the set of such sequences.
We refer to the set of all finite-length bitstrings by {0, 1}∗. The transpose of the matrix A is AT . For
matrices A1, . . . , AN , diag(A1, A2, . . . , AN ) refers to the block-diagonal matrix with the Ai on the main
diagonal. The N ×N identity matrix is IN and 0N stands for the N -dimensional column vector with all
entries equal to 0. For the vector x ∈ Rd, we let ∥x∥∞ := maxi=1,2,...,d |xi|. log(·) refers to the logarithm
to base 2, log(n) = log ◦ · · · ◦ log is the n-fold iterated logarithm, and logτ (·) = (log(·))τ , for τ ∈ R.
The composition of functions f1, f2 is denoted by f2 ◦ f1 (or f1 ◦ f2). For ϵ > 0, let f(ϵ) and g(ϵ) be
strictly positive for all small enough values of ϵ. We use f(ϵ) = o(g(ϵ)) to indicate that limϵ→0

f(ϵ)
g(ϵ) = 0

and we express lim supϵ→0
f(ϵ)
g(ϵ) < ∞ by f(ϵ) = O(g(ϵ)). Moreover, we write f(ϵ) = Θ(g(ϵ)) when

both f(ϵ) = O(g(ϵ)) and g(ϵ) = O(f(ϵ)). Constants are always understood to be in R unless explicitly
stated otherwise. Finally, we say that a constant is universal if it does not depend on any of the ambient
quantities.
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II. PROBLEM SETUP AND METRIC-ENTROPY OPTIMALITY

A. ReLU network approximation

We start by defining ReLU networks.

Definition II.1 (ReLU network [7]). Let L ∈ N and N0, N1, . . . , NL ∈ N. A ReLU (feedforward) neural
network Φ is a map Φ : RN0 → RNL given by

Φ =


W1, L = 1

W2 ◦ ρ ◦W1, L = 2

WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1, L ≥ 3

(1)

where, for ℓ ∈ {1, 2, . . . , L}, Wℓ : RNℓ−1 → RNℓ , Wℓ(x) := Aℓx + bℓ, x ∈ RNℓ−1 , are affine transfor-
mations with (weight) matrices Aℓ ∈ RNℓ×Nℓ−1 and (bias) vectors bℓ ∈ RNℓ , and the ReLU activation
function ρ : R → R, ρ := max{x, 0} acts component-wise, i.e., ρ(x1, . . . , xN ) = (ρ(x1), . . . , ρ(xN )).
We denote the set of all ReLU networks with input dimension N0 = d and output dimension NL = d′ by
Nd,d′ . Moreover, we define the following quantities related to the notion of size of the ReLU network Φ:

• depth L(Φ) := L,
• the connectivity M(Φ) of the network Φ is the total number of non-zero entries in the matrices
Aℓ, ℓ ∈ {1, 2, ..., L}, and the vectors bℓ, ℓ ∈ {1, 2, ..., L},

• width W(Φ) := maxℓ=0,...,LNℓ,
• the weight set K(Φ) denotes the set of non-zero entries in the matrices Aℓ, ℓ ∈ {1, 2, ..., L}, and

the vectors bℓ, ℓ ∈ {1, 2, ..., L},
• weight magnitude B := maxℓ=1,...,Lmax {∥Aℓ∥∞ , ∥bℓ∥∞}.

We next formalize the concept of network weight quantization.

Definition II.2 (Quantization [7]). Let m ∈ N and ϵ ∈ (0, 1/2). The network Φ is said to have (m, ϵ)-
quantized weights if K(Φ) ⊂ 2−m⌈log(ϵ

−1)⌉Z ∩ [−ϵ−m, ϵ−m]. Moreover, for a ∈ R, we define the (m, ϵ)-
quantization map rounding real-valued numbers to integer multiples of 2−m⌈log(ϵ

−1)⌉ as

Qm,ϵ(a) :=
⌈
a/2−m⌈log(ϵ

−1)⌉
⌉
· 2−m⌈log(ϵ−1)⌉. (2)

Every quantized ReLU network can be represented by a bitstring specifying the topology of the
network along with its quantized non-zero weights, i.e., the entries of Aℓ, ℓ ∈ {1, 2, ..., L}, and
bℓ, ℓ ∈ {1, 2, ..., L}. In Appendix A, we specify how this bitstring is organized. Taking this bitstring
back to the quantized ReLU network is done through a mapping, which we denote by DN and refer to
as the canonical neural network decoder.

Remark II.3. For every ReLU network Φ with (m, ϵ)-quantized weights, there is a bitstring b of length
no more than C0m log(ϵ−1)M(Φ) log(M(Φ)) such that DN (b) = Φ, with C0 > 0 a universal constant.
This follows by upper-bounding (116) in Appendix A.

As we consider the approximation of sequence-to-sequence maps (RZ → RZ), feedforward networks
as defined above are not applicable since they effect maps between finite-dimensional spaces, concretely
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from RN0 to RNL . However, and perhaps surprisingly, simply applying feedforward networks iteratively in
a judicious manner turns out to be sufficient for approximating interesting classes of nonlinear sequence-
to-sequence maps in a Kolmogorov-Donoho-optimal manner. Concretely, this gives rise to the concept
of recurrent neural networks.

Definition II.4 (Recurrent neural networks [16]). For m ∈ N, let Φ ∈ Nm+1,m+1 be a ReLU network of
depth L(Φ) ≥ 2. The recurrent neural network (RNN) associated with Φ is the operator RΦ : RN → RN

mapping input sequences (x[t])t≥0 in R to output sequences (y[t])t≥0 in R according to(
y[t]

h[t]

)
= Φ

((
x[t]

h[t− 1]

))
, ∀t ≥ 0, (3)

where h[t] ∈ Rm is the hidden state vector sequence with initial state h[−1] = 0m. We denote the set of
all RNNs by NR.

Remark II.5. When unfolded in time, an RNN simply amounts to repeated application of Φ.

From Definition II.4 it is apparent that an RNN RΦ is fully specified by its associated feedforward
network Φ.

Definition II.6. Formally, we define R :
⋃∞

m=1Nm+1,m+1 → NR as the map that takes a ReLU network
Φ to its associated RNN RΦ according to Definition II.4.

Together with the canonical neural network decoder DN , we thus obtain the following procedure for
decoding a bitstring to an RNN.

Definition II.7 (Canonical RNN decoder). We define the canonical RNN decoder as DR := R ◦ DN ,
where R is as in Definition II.6 and DN is the canonical neural network decoder.

The main point of this paper is to show that the canonical RNN decoder is capable of approximating a
wide variety of non-linear sequence-to-sequence maps (RZ → RZ) in a metric-entropy-optimal manner.
This means that there are no other decoders that use fundamentally fewer bits. In addition, the results in
[7] show that the canonical neural network decoder optimally approximates a wide variety of function
classes mapping Rd to R. Taken together, we will hence be able to conclude that ReLU networks are
able to optimally approximate function classes as well as sequence-to-sequence maps.

B. Metric-Entropy Optimality

In this section, we rigorously define the notion of metric-entropy optimal approximation. Consider a
metric space (X , ρ) and a compact subset C ⊂ X . Together, C and ρ determine an approximation task.
Specifically, we wish to approximate elements f ∈ C to within a prescribed error ϵ > 0 in the metric ρ

by elements f̃ ∈ X which can be encoded by finite-length bitstrings b ∈ {0, 1}ℓ. To go from bitstrings
to elements of X , we define decoder mappings as follows.

Definition II.8. A decoder D : {0, 1}∗ → X is a mapping from bitstrings of arbitrary length to elements
of X .
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We shall frequently want to quantify how well a given decoder D performs.

Definition II.9. Given a metric space (X , ρ), a compact set C ⊂ X , and a decoder D : {0, 1}∗ → X ,
we say that (C, ρ) is representable by D, if for every ϵ > 0 and every f ∈ C, there exist ℓ ∈ N and a
bitstring b ∈ {0, 1}ℓ such that

ρ(D(b), f) ≤ ϵ.

Furthermore, we set

L(ϵ;D, C, ρ) := min
{
ℓ′ ∈ N | ∀f ∈ C, ∃ℓ ≤ ℓ′, ∃b ∈ {0, 1}ℓ s.t. ρ(D(b), f) ≤ ϵ

}
.

Remark II.10. This setting allows us to fix a decoder D (e.g., the canonical neural network decoder)
and then study how well D performs on different (C, ρ). That is, D does not depend on C, ρ, f , or ϵ.

The quantity L(ϵ;D, C, ρ) measures how bit-efficient the decoder D is in representing C with respect
to ρ. It is now natural to ask what the minimum required number of bits, independently of D, is for
representing C with respect to ρ. The concept of metric entropy [24], [25] gives an answer to this question.

Definition II.11. Let (X , ρ) be a metric space and C ⊂ X compact. The set {x1, x2, . . . , xN} ⊂ C
(respectively {x1, x2, . . . , xN} ⊂ X ) is an ϵ-covering (respectively ϵ-net) for (C, ρ) if, for each x ∈ C,
there exists an i ∈ {1, 2, . . . , N} so that ρ(x, xi) ≤ ϵ. The ϵ-covering number N(ϵ; C, ρ) (respectively the
exterior ϵ-covering number N ext(ϵ; C, ρ)) is the cardinality of a smallest ϵ-covering (respectively smallest
ϵ-net) for (C, ρ).

In general, it is hard to obtain precise expressions for covering numbers. One therefore typically
resorts to characterizations of their asymptotic behavior as ϵ → 0. In [7], where sets of functions are
considered, this is done through the concept of optimal exponents. Here, however, we are concerned with
sets of systems, which are much more massive and hence require a refined framework for quantifying the
asymptotic behavior of their covering numbers. Thus, inspired by [26, Section II.C], we use the following
notions.

Definition II.12 (Order, type, and generalized dimension). Consider a metric space (X , ρ) and a compact
set C ⊂ X . Then (C, ρ) is said to be of order κ ∈ N and type λ ∈ N if the quantity

d := lim sup
ϵ→0

log(κ+1)N ext(ϵ; C, ρ)
logλ (ϵ−1)

(4)

is finite and non-zero. In this case, we call d the generalized dimension.

Order, type, and generalized dimension provide measures for the “description complexity” of (C, ρ)
with the order κ the coarsest one. For a given order, the type λ constitutes a finer measure, and for fixed
order and type, the generalized dimension d is the finest measure [26].

Whenever the optimal exponent according to [7, Definition IV.1] is well-defined (i.e., strictly positive
and finite), the underlying set has order and type equal to one and generalized dimension equal to the
inverse of the optimal exponent (Lemma B.1). Based on this insight, we obtain Table I, which lists the
generalized dimension for the sets considered in [7, Table 1].
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Metric C κ λ d

{R → R} L2([0, 1]) L2-Sobolev U(Wm
2 ([0, 1])) 1 1 1/m

{R → R} L2([0, 1]) Hölder U(Cα([0, 1])) 1 1 1/α

{R → R} L2([0, 1]) Bump Algebra U(B1
1,1([0, 1])) 1 1 1

{R → R} L2([0, 1]) Bounded Variation U(BV ([0, 1])) 1 1 1

{Rd → R} L2(Ω) Lp-Sobolev U(Wm
p (Ω)) 1 1 d

m

{Rd → R} L2(Ω) Besov U(Bm
p,q(Ω)) 1 1 d

m

{Rd → R} L2(Ω) Modulation U(M s
p,p(Rd)) 1 1 (1p−

1
2+

2s
d )

{Rd → R} L2(Ω) Cartoon functions Eβ([−1
2 ,

1
2 ]

d) 1 1 2
β(d−1)

TABLE I: Generalized dimension for the sets considered in [7]. Here, U(X) = {f ∈ X : ∥f∥X ≤ 1}
denotes the unit ball in the space X and Ω ⊆ Rd is a Lipschitz domain.

Returning to the previous discussion, we are now able to characterize the minimum number of bits
required by any decoder to ϵ-represent (C, ρ).

Lemma II.13. Consider the metric space (X , ρ), the compact set C ⊂ X of order κ, type λ, and
generalized dimension d, and assume that (C, ρ) is representable by a decoder D. Then, it holds that

lim sup
ϵ→0

log(κ) L(ϵ;D, C, ρ)
logλ (ϵ−1)

≥ d. (5)

Proof. See Appendix C-A.

It is natural to say that a decoder D is optimal if it satisfies (5) with equality.

Definition II.14. Consider the metric space (X , ρ) and the compact set C ⊂ X of order κ and type λ

with generalized dimension d. We say that (C, ρ) is optimally representable by the decoder D, if (C, ρ)
is representable by D and

lim sup
ϵ→0

log(κ) L(ϵ;D, C, ρ)
logτ (ϵ−1)

= d. (6)

We now recall a remarkable universal optimality property of ReLU networks, namely all the function
classes listed in Table I are optimally representable, in the sense of Definition II.14, by the canonical
neural network decoder. This is a simple reformulation of the results in [7]; we provide the details of
this reformulation in Appendix B. In the present paper, we establish that RNNs (Definition II.4), with
inner ReLU networks, extend this universality to the approximation of nonlinear dynamical systems.

C. Lipschitz Fading-Memory Systems

We proceed to characterize the class of dynamical systems we are interested in and start by defining
their domain.

Definition II.15. For fixed D > 0, we denote the set of admissible input signals by S := [−D,D]Z, that
is, for every x[·] ∈ S, it holds that |x[t]| ≤ D, ∀t ∈ Z.
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The quantity D > 0 is taken to be fixed throughout the paper and the dependence of S on D is not
explicitly indicated.

First, the systems G : S → RZ we consider are causal.

Definition II.16 (Causality). A system G : S → RZ is causal, if for each T ∈ Z, for every pair x, x′ ∈ S
with x[t] = x′[t],∀t ≤ T , it holds that (Gx)[T ] = (Gx′)[T ].

Second, we demand time-invariance.

Definition II.17 (Time-invariance). A system G : S → RZ is time-invariant, if for every τ ∈ Z, it holds
that

TτGx = GTτx, ∀x ∈ S,

with the shift operator Tτ : RZ → RZ defined as (Tτx)[t] := x[t− τ ].

Next, we follow Volterra, who suggested that [19, p. 188] “a first extremely natural postulate is to
suppose that the influence of the [input] a long time before the given moment gradually fades out.” This
property was termed “fading memory” in [21], and here we introduce a more quantitative version thereof,
namely the concept of “Lipschitz fading memory” describing the speed at which system memory fades.
This definition is inspired by examples in [8], [27]–[29], which will be discussed in more detail later.

Definition II.18 (Lipschitz fading-memory). We say that (w[t])t≥0 is a weight sequence if it is non-
increasing and satisfies w[t] ∈ (0, 1],∀t ≥ 0, and limt→∞w[t] = 0. A system G : S → RZ has Lipschitz
fading-memory with respect to the weight sequence w if

|(Gx)[t]− (Gy)[t]| ≤ sup
τ≥0

|w[τ ](x[t− τ ]− y[t− τ ])|, ∀t ∈ Z, ∀x, y ∈ S.

The class of Lipschitz fading-memory (LFM) systems considered in the remainder of the paper can
now formally be defined as follows.

Definition II.19 (Lipschitz fading-memory systems). Given a weight sequence w[·], we define

G(w) := {G : S → RZ |G is causal, time-invariant, has Lipschitz fading-memory w.r.t. w,

and satisfies (G0)[t] = 0, ∀t ∈ Z}. (7)

As we will want to approximate LFM systems G ∈ G(w) by RNNs, we need a metric that quantifies
approximation quality. This metric should take into account that the RNNs we consider start running at
time t = 0 and will, moreover, be of worst-case nature.

Definition II.20. Let S+ := {s ∈ S |s[t] = 0, ∀t < 0}. For G,G′ ∈ {RZ → RZ} we define the metric

ρ∗(G,G′) = sup
x∈S+

sup
t∈N

|(Gx)[t]− (G′x)[t]|.

We hasten to add that the restriction to one-sided input signals in Definition II.20 and to taking the
supremum over t ∈ N in the output signals does not impact the hardness of the approximation task as
shown by the next result.
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Lemma II.21. Let (w[t])t≥0 be a weight sequence. For G,G′ ∈ G(w), we have

ρ∗(G,G′) = sup
x∈S

sup
t∈Z

|(Gx)[t]− (G′x)[t]|.

Proof. See Appendix C-B.

We are now ready to formally state the main goal of this paper, which is to prove that (G(w), ρ∗) is
optimally representable by the canonical RNN decoder in Definition II.7. In fact, we will be seeking a
quantitative version of this statement comparing the description complexity of the class G(w) to that of
the RNNs approximating it.

III. APPROXIMATION RATES FOR LFM SYSTEMS

In this section, we study the (ϵ-)scaling behavior of N ext(ϵ;G(w), ρ∗) for general weight sequences
w. This will be effected by deriving an upper bound on N ext(ϵ;G(w), ρ∗) through the construction of a
covering and a lower bound by identifying an explicit packing. We first define the concept of packings.

Definition III.1. Let (X , ρ) be a metric space and C ⊂ X compact. An ϵ-packing for (C, ρ) is a set
{x1, x2, . . . , xN} ⊂ C such that ρ(xi, xj) > ϵ, for all distinct i, j. The ϵ-packing number M(ϵ; C, ρ) is
the cardinality of a largest ϵ-packing for (C, ρ).

We shall frequently make use of the following two results relating the packing, covering, and exterior
covering numbers.

Lemma III.2 ([24], Theorem IV). Let (X , ρ) be a metric space and C ⊂ X compact. For all ϵ > 0, we
have

M(2ϵ; C, ρ) ≤ N ext(ϵ; C, ρ) ≤ N(ϵ; C, ρ) ≤ M(ϵ; C, ρ). (8)

Lemma III.3 ([24], p. 93). Let (X , ρX ) and (Y, ρY) be metric spaces and consider the compact subsets
CX ⊂ X and CY ⊂ Y . Assume that there exists an isometric isomorphism f : CX → CY , i.e., f is bijective
and for every pair a, b ∈ CX , one has ρY(f(a), f(b)) = ρX (a, b). Then,

N(ϵ; CX , ρX ) = N(ϵ; CY , ρY) and M(ϵ; CX , ρX ) = M(ϵ; CY , ρY). (9)

Lemma III.3 will allow us to work with a simplified metric space (G0(w), ρ0) instead of the original
one (G(w), ρ∗). Concretely, we exploit the properties of LFM systems to effect this reduction as follows.
First, as LFM systems are causal, their output at time t depends on the history of inputs up to and
including time t only. Second, time-invariance implies that the map taking the history of the input signal
to the current output at time t does not change with t and we can therefore restrict ourselves to t = 0

w.l.o.g.. Thus, the mapping realized by an LFM system is completely characterized by the response to
signals in the set

S− := {s ∈ S | ∀ℓ > 0 : s[ℓ] = 0}. (10)

We now define the simplified metric space (G0(w), ρ0) according to

G0(w) := {g : S− → R | |g(x)− g(x′)| ≤ ∥x− x′∥w, ∀x, x′ ∈ S−, g(0) = 0}, (11)
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where

∥x− x′∥w := sup
t≥0

|w[t](x[−t]− x′[−t])| (12)

and
ρ0(g, g

′) = sup
x∈S−

|g(x)− g′(x)|. (13)

Next, we define the projection operator P : S → S− as

(Px)[t] = x[t] · 1{t≤0}

and formalize the isometric isomorphism between functionals g ∈ G0(w) and systems G ∈ G(w) as
follows.

Lemma III.4. Let w[·] be a weight sequence. The map

I : G0(w) → G(w) (14)

g → G := (x → {g(PT−tx)}t∈Z) (15)

is an isometric isomorphism between (G0(w), ρ0) and (G(w), ρ∗). Furthermore, N(ϵ;G0(w), ρ0) =

N(ϵ;G(w), ρ∗) and M(ϵ;G0(w), ρ0) = M(ϵ;G(w), ρ∗), for all ϵ > 0.

Proof. See Appendix C-C.

In the remainder of this section, we first lower-bound M(ϵ;G0(w), ρ0), then upper-bound
N(ϵ;G0(w), ρ0) and finally use Lemmata III.3 and III.4 to translate these bounds into bounds on
N ext(ϵ;G0(w), ρ0). The lower bound is established as follows.

Lemma III.5. Let w[·] be a weight sequence. The ϵ-packing number of (G0(w), ρ0) satisfies

logM(ϵ;G0(w), ρ0) ≥

(
T∏

ℓ=0

⌈
2Dw[ℓ]

ϵ

⌉)
− 1,

where T := max{T ′ ∈ N | w[T ′] > ϵ
2D}.

Proof. The proof is taken from [24] and is detailed, for completeness, in Appendix C-D.

To upper-bound N(ϵ;G0(w), ρ0), we construct an ϵ-net for (G0(w), ρ0). This construction is again
inspired by [24] but we need to modify it to ensure that the elements of the ϵ-net can efficiently be realized
by ReLU networks. To be specific, we employ piece-wise linear mappings to approximate LFM systems
instead of piece-wise constant mappings as considered in [24], which requires significant adjustments to
the proof in [24, Section 7.2]

We start by introducing the “spike” function ϕ : Rd → R considered in [30], and defined as

ϕ(z) = max{1 + min{z1, . . . , zd, 0} −max{z1, . . . , zd, 0}, 0}. (16)
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An illustration of spike functions for d = 1 and d = 2 is provided in Figure 1. The idea of this “spike”
function can be traced back to [31], where the convex set

{z ∈ Rd : max{z1, . . . , zd, 0} −min{z1, . . . , zd, 0} ≤ 1} (17)

is considered and shown to be the union of (d+ 1)! simplices in the unit cube surrounding 0 given by

{z ∈ [−1, 1]d : zσ(0) ≤ zσ(1) ≤ · · · ≤ zσ(d)}, (18)

where σ is a permutation of the integers 0, 1, . . . , d and z0 := 0. In [31], this result is employed
to approximate continuous functions mapping Rd to R by functions that are piece-wise linear on the
simplices in (18).

We remark that the spike function (16) is a composition of affine functions and min/max functions,
which, as shown in Section V, renders it uniquely suitable for realization through ReLU networks. To
be specific, in Lemmata C.2 and V.1, we provide concrete realizations of spike functions using ReLU
networks. This construction is novel and distinct from the methodology considered in [30].

(a) d = 1 (b) d = 2

Fig. 1: The “spike” functions in dimensions 1 and 2.

We proceed to show how a partition of unity (p.o.u.) can be realized as a weighted linear combination
of shifted spike functions, a property that will be of key importance in the RNN constructions described
in Section V.

To this end, we consider the lattice

M = JM1K± × · · · × JMdK± ⊂ Rd, where Mℓ ∈ N, for ℓ ∈ {1, 2, . . . , d}, (19)

with the associated collection of shifted “spike” functions on Rd

Ξ := {ϕ(· − n)}n∈M. (20)

The construction of the p.o.u. is as follows.
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Lemma III.6. Consider the spike function

ϕ(z) = max{1 + min{z1, . . . , zd, 0} −max{z1, . . . , zd, 0}, 0}, (21)

the lattice
M = JM1K± × · · · × JMdK± ⊂ Rd, where Mℓ ∈ N, for ℓ ∈ {1, 2, . . . , d}, (22)

and the set
Ξ := {ϕ(· − n)}n∈M. (23)

Then, Ξ forms a p.o.u. on
∏d

ℓ=1[−Mℓ,Mℓ], i.e.,

(i) 0 ≤ ϕ(z − n) ≤ 1, for z ∈ Rd and n ∈ M;

(ii) ϕ(· − n) is compactly supported, specifically supp(ϕ(· − n)) ⊂ n+ [−1, 1]d;

(iii) it holds that ∑
n∈M

ϕ(z − n) = 1, for z ∈
d∏

ℓ=1

[−Mℓ,Mℓ].

Proof. To prove (i), we note that ϕ(z) ≥ 0 by definition and

1 + min{z1, . . . , zd, 0} −max{z1, . . . , zd, 0} ≤ 1.

To establish (ii), it suffices to prove that

ϕ(z) = 0, for z ∈ Rd \ [−1, 1]d.

To this end, we pick z ∈ Rd \ [−1, 1]d arbitrarily and fix an arbitrary ℓ ∈ {1, 2, . . . , d} such that |zℓ| > 1.
Assume that zℓ > 1. (The case zℓ < −1 follows similarly.) Then,

1 + min{z1, . . . , zd, 0} −max{z1, . . . , zd, 0} ≤ 1 + 0− zℓ < 0,

which by (21) implies ϕ(z) = 0.

We proceed to prove (iii). Since supp(ϕ(· − n)) ⊂ n+ [−1, 1]d, we have

∑
n∈M

ϕ(z − n) =
∑

n∈
∏d

ℓ=1{⌊zℓ⌋,⌈zℓ⌉}

ϕ(z − n), for z ∈
d∏

ℓ=1

[−Mℓ,Mℓ].

Defining z̄ ∈ Rd with z̄ℓ = ⌊zℓ⌋, for ℓ = 1, 2, . . . , d, and noting that ϕ(z − n) = ϕ((z − z̄)− (n− z̄)), it
suffices to show that ∑

n∈{0,1}d
ϕ(z − n) = 1, for z ∈ [0, 1]d and n ∈ {0, 1}d.

As min{x1, . . . , xd} and max{x1, . . . , xd} are permutation-invariant, so is ϕ by (21). We can therefore
assume, w.l.o.g., that z1 ≥ z2 ≥ · · · ≥ zd.

Now, set ek to be the k-th unit vector in Rd and let

A :=

{
0, e1, e1 + e2, . . . ,

k∑
i=1

ei, . . . ,

d∑
i=1

ei

}
⊂ {0, 1}d.
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We claim that
ϕ(z − n) = 0, for z ∈ [0, 1]d and n ∈ {0, 1}d \A. (24)

This can be verified as follows. First, thanks to

n ∈ {0, 1}d \A ⇔ ∃ i, j ∈ {1, 2, . . . , d}, i < j, s.t. ni = 0, nj = 1,

we get for z ∈ [0, 1]d and n ∈ {0, 1}d \A,

min{z1 − n1, z2 − n2, . . . , zd − nd, 0} ≤ zj − nj = zj − 1,

max{z1 − n1, z2 − n2, . . . , zd − nd, 0} ≥ zi − ni = zi,

⇒ 1 + {z1 − n1, z2 − n2, . . . , zd − nd, 0} −max{z1 − n1, z2 − n2, . . . , zd − nd, 0} ≤ 0,

and hence ϕ(z − n) = 0. It thus suffices to show that∑
n∈A

ϕ(z − n) = 1, for z ∈ [0, 1]d. (25)

Now, a direct calculation yields, for z ∈ [0, 1]d,

ϕ(z) = 1− z1, (26)

ϕ

(
z −

k∑
i=1

ei

)
= zk − zk+1, for k = 1, . . . , d− 1, (27)

ϕ

(
z −

d∑
i=1

ei

)
= zd. (28)

Summing (26)-(28) proves (25).

Next, we establish a traversal property of the lattice M.

Definition III.7 (Regular path). For every d ∈ N, Mℓ ∈ N, ℓ ∈ {1, . . . , d}, and corresponding lattice
M = JM1K± × · · · × JMdK±, we call a path n1 ↔ n2 ↔ · · · ↔ n|M| regular for M if

(i) the path visits each grid point in M exactly once,

(ii) ni+1 and ni for i = 1, . . . , |M| − 1, differ in exactly one position, specifically by +1 or −1.

Lemma III.8. For every d ∈ N, Mℓ ∈ N, ℓ ∈ {1, . . . , d}, and corresponding lattice M = JM1K± ×
· · · × JMdK±, there exists a regular path n1 ↔ n2 ↔ · · · ↔ n|M| for |M|.

Proof. We write Md for the d-dimensional lattice JM1K± × · · · × JMdK± to emphasize the dependence
on the dimension d and prove the statement by induction over d. The base case d = 1 follows by
simply considering the path −M1 ↔ −M1 + 1 ↔ · · · ↔ 0 ↔ · · · ↔ M1 − 1 ↔ M1 for lattice
M1. Assume now that the statement holds for d = k, i.e., there exists a path n1 ↔ · · · ↔ n|Mk|

that is regular for lattice Mk. For d = k + 1, consider Mk+1 = JM1K± × · · · × JMk+1K±. Then, the
path (n1,−Mk+1) ↔ · · · ↔ (n|Mk|,−Mk+1) ↔ (n|Mk|,−Mk+1 + 1) ↔ · · · ↔ (n1,−Mk+1 + 1) ↔
(n1,−Mk+1 + 2) ↔ · · · ↔ (n|Mk|,−Mk+1 + 2) ↔ . . . is regular for lattice Mk+1.
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We are now ready to describe our construction of the ϵ-net for (G0(w), ρ0). In fact, we shall specify
not only the elements of the ϵ-net, but also the mapping taking a given functional g ∈ G0(w) to an ϵ-close
element of the net. Counting the number of ball centers needed to ensure that every g ∈ G0(w) is in the ϵ-
vicinity of some ball center then yields the cardinality of the ϵ-net. The mapping proceeds by constructing
a functional g̃ which is approximately faithful with respect to g on amplitude-discretized and time-
truncated input signals. Discretization reflects that we are interested only in an ϵ-precise characterization
of the action of the functional g and truncation is rendered possible by the fading-memory property. The
formal result is detailed as follows.

Lemma III.9. For every ϵ > 0 and s ≥ 1, set

T := max

{
ℓ ∈ N

∣∣∣ w[ℓ] > ϵ

D

s

s+ 1

}
,

δℓ :=
s

s+ 1

ϵ

w[ℓ]
, ∀ℓ ∈ JT K ,

Nℓ :=

⌈
D

δℓ

⌉
, ∀ℓ ∈ JT K ,

and define the mapping

k : S− → RT+1

kℓ(x) :=
x[−ℓ]

δℓ
, ∀ℓ ∈ JT K .

Furthermore, consider the lattice

N := JN0K± × · · · × JNT K± ⊂ RT+1.

Then, there exists a set U0 ⊂ R|N| with |U0| =
(
2
⌈
s+1
2

⌉
+ 1
)|N|−1 such that

U :=

{
g̃ : S− → R

∣∣∣∣ g̃(x) = ∑
n∈N

ĝnϕ(k(x)− n), {ĝn}n∈N ∈ U0

}
is an ϵ-net for (G0(w), ρ0). Furthermore, it holds that

|U| =
(
2

⌈
s+ 1

2

⌉
+ 1

)|N|−1
=

(
2

⌈
s+ 1

2

⌉
+ 1

)[∏T
ℓ=0(2⌈Dw[ℓ]

ϵ

s+1

s ⌉+1)]−1
.

Proof. The construction proceeds in three steps.

Step 1: We pick amplitude-discretized and time-truncated signals from S− on the lattice N and
approximately interpolate the functional g ∈ G0(w) on these signals, using the elements of the p.o.u.
Ξ = {ϕ(· − n)}n∈N as interpolation basis functions, to get a new functional ĝ.

Fix g ∈ G0(w) arbitrarily. For each n ∈ N, define a signal x̂n ∈ S− according to

x̂n[−ℓ] :=

δℓnℓ, if ℓ ∈ JT K

0, if ℓ ∈ Z \ JT K
(29)
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and let ĝ : S− → R be given by

ĝ(x) =
∑
n∈N

g(x̂n)ϕ(k(x)− n). (30)

We first prove that
|ĝ(x)− g(x)| ≤ sϵ

s+ 1
, for x ∈ S−. (31)

By Lemma III.6, {ϕ(· − n)}n∈N constitutes a p.o.u. on
∏T

ℓ=0[−Nℓ, Nℓ], and hence

ϕ(k(x)− n) = 0, for all x ∈ S− s.t. ∥k(x)− n∥∞ > 1. (32)

Furthermore, for x ∈ S− and n ∈ N such that ∥k(x)− n∥∞ ≤ 1, we have∣∣∣∣x[−ℓ]

δℓ
− nℓ

∣∣∣∣ ≤ 1, for ℓ ∈ JT K ,

which gives

w[ℓ] |x[−ℓ]− x̂n[−ℓ]| ≤ w[ℓ]δℓ =
sϵ

s+ 1
, for ℓ ∈ JT K ,

w[ℓ] |x[−ℓ]− x̂n[−ℓ]| = w[ℓ] |x[−ℓ]|

≤ ϵ

D

s

s+ 1
D =

sϵ

s+ 1
, for ℓ > T,

and therefore
∥x− x̂n∥w ≤ sϵ

s+ 1
. (33)

Hence, we can bound the approximation error |g(x)− ĝ(x)|, for x ∈ S−, according to

|g(x)− ĝ(x)| (30), p.o.u.
=

∣∣∣∣∣∑
n∈N

(g(x)− g(x̂n))ϕ(k(x)− n)

∣∣∣∣∣ (34)

(32)
=

∣∣∣∣∣∣
∑

∥k(x)−n∥∞≤1

(g(x)− g(x̂n))ϕ(k(x)− n)

∣∣∣∣∣∣ (35)

(ϕ≥0)
≤

∑
∥k(x)−n∥∞≤1

|(g(x)− g(x̂n))|ϕ(k(x)− n) (36)

Lipschitz
≤

∑
∥k(x)−n∥∞≤1

∥x− x̂n∥w ϕ(k(x)− n) (37)

(33)
≤ sϵ

s+ 1

∑
∥k(x)−n∥∞≤1

ϕ(k(x)− n) (38)

(32)
=

sϵ

s+ 1

∑
n∈N

ϕ(k(x)− n) (39)

p.o.u.
=

sϵ

s+ 1
. (40)

Step 2: We modify the interpolation weights g(x̂n) in ĝ to weights ĝn, for each n ∈ N, along a fixed
traversal of N, to get a new functional g̃ that approximates g to within an error of at most ϵ.
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Specifically, we construct, by induction, a functional g̃ such that

|g̃(x)− ĝ(x)| ≤ ∆ :=
ϵ

s+ 1
. (41)

To this end, we let
g̃(x) :=

∑
n∈N

ĝnϕ(k(x)− n) (42)

and then set out to find, for every n ∈ N, a value ĝn so that

|g(x̂n)− ĝn| ≤ ∆, (43)

which, in turn, yields

|ĝ(x)− g̃(x)| =

∣∣∣∣∣∑
n∈N

(g(x̂n)− ĝn)ϕ(k(x)− n)

∣∣∣∣∣
≤
∑
n∈N

|g(x̂n)− ĝn|ϕ(k(x)− n)

≤ ∆
∑
n∈N

ϕ(k(x)− n)

p.o.u.
= ∆.

Therefore,
|g̃(x)− g(x)| ≤ |g̃(x)− ĝ(x)|+ |ĝ(x)− g(x)| ≤ ∆+

sϵ

s+ 1
= ϵ. (44)

It remains to specify how the values ĝn, n ∈ N, can be obtained such that (43) holds. This will be done
by performing the mapping to ĝn along a certain traversal of N. To this end, we note that by Lemma
III.8, there exists a path n1 ↔ n2 ↔ · · · ↔ n|N| that is regular for N. We proceed with the proof by
considering two cases.

• Case 1: The path n1 ↔ n2 ↔ · · · ↔ n|N| starts or ends at 0 ∈ N.
In particular, we assume, w.l.o.g., that n1 = 0. Next, we find the values ĝnk

satisfying (43) inductively
over the index k = 1, 2 . . . , |N|. The base case k = 1 is immediate as we can simply set ĝn1

= 0

and thereby obtain
|g(x̂n1

)− ĝn1
| (11)
= |g(0)− 0| = 0 ≤ ∆.

Now, assume that (43) holds for some nk, k ∈ {1, 2, . . . , |N|}, on the path n1 → · · · → n|N|. Then,
by Lemma III.8, nk+1 differs in exactly one position from nk, namely by +1 or −1, which, based
on (12) and (29), yields

∥∥x̂nk+1
− x̂nk

∥∥
w
≤ ϵs

s+1 . Upon noting that

∣∣g (x̂nk+1

)
− ĝnk

∣∣ =
∣∣∣∣∣∣∣g
(
x̂nk+1

)
− g (x̂nk

)︸ ︷︷ ︸
Lipschitz

+ g (x̂nk
)− ĝnk︸ ︷︷ ︸

(43)

∣∣∣∣∣∣∣
≤
∥∥x̂nk+1

− x̂nk

∥∥
w
+∆

≤ ϵs

s+ 1
+∆ = (s+ 1)∆,
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we can conclude that there exists an

m ∈
{
−2

⌈
s+ 1

2

⌉
,−2

⌈
s+ 1

2

⌉
+ 2, . . . , 2

⌈
s+ 1

2

⌉}
,

s.t. ĝnk+1
:= ĝnk

+m∆ and
∣∣ĝnk+1

− g(x̂nk+1
)
∣∣ ≤ ∆.

(45)

This completes the induction.

• Case 2: The path n1 ↔ n2 ↔ · · · ↔ n|N| does not start or end at 0 ∈ N.
In particular, we assume ni = 0 ∈ N, for some i ∈ {2, 3, . . . , |N| − 1}. To follow the spirit of Case
1, we start the search of {ĝn}n∈N from ni = 0. We then split the path n1 ↔ n2 ↔ · · · ↔ n|N| into
path← := ni → ni−1 → · · · → n1 and path→ := ni → ni+1 → · · · → n|N|. The idea is to prove
(43) by performing induction across path← and path→ separately. This can be done following the
same procedure as in Case 1.

Step 3: Repeat Steps 1 and 2 for all g ∈ G0(w) and collect all the resulting {ĝn}n∈N in a set
U0. Specifically, for Case 1, we need to store one value for ĝn1

and, according to (45),
(
2
⌈
s+1
2

⌉
+ 1
)

increments or decrements from ĝni
to ĝni+1

, for i = 0, 1, . . . , |N| − 1. As the path n1 → · · · → n|N| is
of length |N| − 1, we get a total of (

2

⌈
s+ 1

2

⌉
+ 1

)|N|−1
values. For Case 2, noting that path← and path→ are of length i − 1 and |N| − i, respectively, and
applying the same argument as above, there is again a total of(

2

⌈
s+ 1

2

⌉
+ 1

)i−1(
2

⌈
s+ 1

2

⌉
+ 1

)|N|−i
=

(
2

⌈
s+ 1

2

⌉
+ 1

)|N|−1
increments or decrements. The set U0 containing all the values {ĝn}n∈N required for (43) to hold for all
g ∈ G0(w) and all n ∈ N is hence of cardinality

|U0| =
(
2

⌈
s+ 1

2

⌉
+ 1

)|N|−1
=

(
2

⌈
s+ 1

2

⌉
+ 1

)[∏T
ℓ=0(2⌈Dw[ℓ]

ϵ

s+1

s ⌉+1)]−1
. (46)

Finally, setting

U :=

{
g̃ : S− → R

∣∣∣∣ g̃(x) = ∑
n∈N

ĝnϕ(k(x)− n), {ĝn}n∈N ∈ U0

}
concludes the proof.

Based on the ϵ-net constructed in Lemma III.9, we can now upper-bound the metric entropy of
(G0(w), ρ0) as follows.

Corollary III.10. For every s ≥ 1, the covering number of (G0(w), ρ0) satisfies

logN(ϵ;G0(w), ρ0) ≤ log

(
2

⌈
s+ 1

2

⌉
+ 1

) T∏
ℓ=0

(
2

⌈
2Dw[ℓ]

ϵ

s+ 1

s

⌉
+ 1

)
,

where T := max
{
ℓ ∈ N | w[ℓ] > ϵ

2D
s

s+1

}
.
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Proof. For ϵ > 0, Lemma III.9 delivers an ϵ
2 -net for (G0(w), ρ0) with(

2

⌈
s+ 1

2

⌉
+ 1

)[∏T
ℓ=0(2⌈ 2Dw[ℓ]

ϵ

s+1

s ⌉+1)]−1

elements. By Definition II.11, it hence follows that

N ext(ϵ/2;G0(w), ρ0) ≤
(
2

⌈
s+ 1

2

⌉
+ 1

)[∏T
ℓ=0(2⌈ 2Dw[ℓ]

ϵ

s+1

s ⌉+1)]
.

From Lemma III.2, we then obtain an upper bound on the covering number according to

N(ϵ;G0(w), ρ0) ≤ N ext(ϵ/2;G0(w), ρ0) ≤
(
2

⌈
s+ 1

2

⌉
+ 1

)[∏T
ℓ=0(2⌈ 2Dw[ℓ]

ϵ

s+1

s ⌉+1)]
,

which finishes the proof.

We conclude the developments in this section by deriving a lower bound and an upper bound on the
exterior covering number of (G(w), ρ∗).

Theorem III.11. The exterior covering number of (G(w), ρ∗) satisfies(
T ′∏
ℓ=0

⌈
Dw[ℓ]

ϵ

⌉)
− 1 ≤ logN ext(ϵ;G(w), ρ∗) ≤ log (3)

T ′′∏
ℓ=0

(
2

⌈
4Dw[ℓ]

ϵ

⌉
+ 1

)
, (47)

where T ′ := max
{
ℓ ∈ N | w[ℓ] > ϵ

D

}
and T ′′ := max

{
ℓ ∈ N | w[ℓ] > ϵ

4D

}
.

Proof. The result follows by noting that(
T ′∏
ℓ=0

⌈
Dw[ℓ]

ϵ

⌉)
− 1

Lemma III.5
≤ logM(2ϵ;G0(w), ρ0)

Lemma III.4
= logM(2ϵ;G(w), ρ∗)

Lemma III.2
≤ logN ext(ϵ;G(w), ρ∗) ≤ logN(ϵ;G(w), ρ∗)

Lemma III.4
= logN(ϵ;G0(w), ρ0)

Corollary III.10
for s=1
≤ log (3)

T ′′∏
ℓ=0

(
2

⌈
4Dw[ℓ]

ϵ

⌉
+ 1

)
.

IV. APPROXIMATION RATES FOR ELFM SYSTEMS AND PLFM SYSTEMS

We now discuss two specific classes of LFM systems, namely exponentially Lipschitz fading-memory
(ELFM) and polynomially Lipschitz fading-memory (PLFM) systems. Specifically, we characterize the
description complexity of these two classes by computing their type, order, and generalized dimension.
The corresponding results will then serve as a reference for the RNN approximations in Section V.
Specifically, we will establish, in Section VI, that RNNs can learn ELFM and PLFM systems in a
metric-entropy-optimal manner.
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A. Approximation rates for ELFM systems

The concept of exponentially Lipschitz fading memory systems is inspired, inter alia, by applications in
finance, such as those discussed in [8], where asset pricing decisions are influenced by past observations.
Instead of relying solely on finite-length observations, the model integrates infinite past observations by
endowing them with exponentially decaying memory. Similar settings are also considered in random
walk models [28], [29]. These examples, when appropriately adapted to the setup in the present paper,
fit into the setting of our LFM systems (Definition II.19) with exponentially decaying weight sequences.
We formally define exponentially decaying memory and the corresponding ELFM systems as follows.

Definition IV.1. For a ∈ (0, 1] and b > 0, let

w
(e)
a,b[t] := ae−bt, for all t ≥ 0.

An LFM system with weight sequence {w(e)
a,b[t]}t≥0 is said to be exponentially Lipschitz fading-memory

(ELFM). We write G(w(e)
a,b) for the class of all ELFM systems with weight sequence w

(e)
a,b[t].

The remainder of this section is devoted to computing the order, type, and generalized dimension of
(G(w(e)

a,b), ρ∗). To this end, we first establish an auxiliary result.

Lemma IV.2. Let a ∈ (0, 1], b, c, d > 0 and consider the weight sequence w
(e)
a,b as per Definition IV.1.

Set
T := max

{
t ∈ N

∣∣∣ w(e)
a,b[t] >

ϵ

d

}
.

Then,

log

 T∏
ℓ=0

cw
(e)
a,b[ℓ]

ϵ

 =
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
. (48)

Proof. See Appendix C-E.

We are now ready to state the main result of this section quantifying the massiveness of the class of
ELFM systems.

Lemma IV.3. Let a ∈ (0, 1] and b > 0. The class of ELFM systems (G(w(e)
a,b), ρ∗) is of order 1 and type

2, with generalized dimension

d =
1

2b log(e)
.

Proof. Consider ϵ ∈ (0, ϵ0) with ϵ0 =
Dw

(e)
a,b[0]

2 = aD
2 . By Theorem III.11, the exterior covering number

of (G(w(e)
a,b), ρ∗) satisfies T ′∏
ℓ=0

Dw
(e)
a,b[ℓ]

ϵ


− 1 ≤ logN ext(ϵ;G(w(e)

a,b), ρ∗) ≤ log (3)

T ′′∏
ℓ=0

2

4Dw
(e)
a,b[ℓ]

ϵ

+ 1

 , (49)
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where
T ′ := max

{
ℓ ∈ N

∣∣∣ w(e)
a,b[ℓ] >

ϵ

D

}
and T ′′ := max

{
ℓ ∈ N

∣∣∣ w(e)
a,b[ℓ] >

ϵ

4D

}
.

We can further lower-bound the left-most term in (49) according to T ′∏
ℓ=0

Dw
(e)
a,b[ℓ]

ϵ


− 1 ≥

 T ′∏
ℓ=0

Dw
(e)
a,b[ℓ]

ϵ

− 1

≥ 1

2

T ′∏
ℓ=0

Dw
(e)
a,b[ℓ]

ϵ
, (50)

where (50) follows from
1

2

T ′∏
ℓ=0

Dw
(e)
a,b[ℓ]

ϵ
≥ 1,

which, in turn, is a consequence of

Dw
(e)
a,b[0]

ϵ
≥

Dw
(e)
a,b[0]

ϵ0
= 2,

Dw
(e)
a,b[ℓ]

ϵ
≥

Dw
(e)
a,b[T

′]

ϵ
> 1, for ℓ ∈

q
T ′

y
\ {0}.

Similarly, we can further upper-bound the right-most term in (49) according to

log(3)

 T ′′∏
ℓ=0

2

4Dw
(e)
a,b[ℓ]

ϵ

+ 1

 ≤ log(3)

 T ′′∏
ℓ=0

8Dw
(e)
a,b[ℓ]

ϵ
+ 3


≤ log(3)

 T ′′∏
ℓ=0

20Dw
(e)
a,b[ℓ]

ϵ

 , (51)

where (51) follows from

4Dw
(e)
a,b[ℓ]

ϵ
≥

4Dw
(e)
a,b[T

′′]

ϵ
> 1, for ℓ ∈

q
T ′′

y
.

Combining (49)–(51), taking logarithms one more time, and dividing the results by log2(ϵ−1), yields

log

(∏T ′

ℓ=0
Dw

(e)
a,b[ℓ]

ϵ

)
− 1

log2(ϵ−1)
≤

log(2)N ext(ϵ;G(w(e)
a,b), ρ∗)

log2(ϵ−1)
≤

log

(∏T ′′

ℓ=0
20Dw

(e)
a,b[ℓ]

ϵ

)
+ log(2)(3)

log2(ϵ−1)
. (52)

Taking the limit ϵ → 0 and applying Lemma IV.2 to the lower and the upper bound in (52), we obtain

lim
ϵ→0

log(2)N ext(ϵ;G(w(e)
a,b), ρ∗)

log2(ϵ−1)
=

1

2b log(e)
,

which implies that (G(w(e)
a,b), ρ∗) is of order 1 and type 2, with generalized dimension

d =
1

2b log(e)
.

June 28, 2024 DRAFT



20

This concludes the proof.

The generalized dimension being inverse proportional to b reflects that faster memory decay rates,
i.e., larger b, result in system classes that are less massive. Additionally, we note that the description
complexity of ELFM systems is primarily determined by the order being equal to 1 and the type equal
to 2. Compared to the function classes in Table I, which are all of order 1 and type 1, this shows that
the class of ELFM systems is significantly more massive than unit balls in function spaces.

B. Approximation rates for PLFM systems

Next, we consider polynomially decaying memory, a concept used, e.g., in the context of PDEs [32],
[33]. Specifically, the references [32], [33] are concerned with Volterra integro-differential equations [27]
of polynomially decaying memory kernels. These examples, when suitably adjusted to the framework
in the present paper, align with our LFM systems (Definition II.19) of polynomially decaying weight
sequences. We formalize the concept of polynomially decaying memory and polynomially Lipschitz
fading-memory (PLFM) systems as follows.

Definition IV.4. For q ∈ (0, 1] and p > 0, let

w(p)
p,q [t] :=

q

(1 + t)p
, for all t ≥ 0.

An LFM system with weight sequence {w(p)
p,q [t]}t≥0 is said to be polynomially Lipschitz fading-memory

(PLFM). We write G(w(p)
p,q) for the class of all PLFM systems with weight sequence w

(p)
p,q [t].

As in the previous section, we first need an auxiliary result.

Lemma IV.5. Let q ∈ (0, 1], p, c, d > 0 and consider w
(p)
p,q as per Definition IV.4. Set

T := max
{
t ∈ N

∣∣∣ w(p)
p,q [t] >

ϵ

d

}
.

Then,

log

(
T∏

ℓ=0

cw
(p)
p,q [ℓ]

ϵ

)
= Θ(ϵ−1/p). (53)

Proof. See Appendix C-F.

We obtain the order, type, and generalized dimension of PLFM systems as follows.

Lemma IV.6. Let q ∈ (0, 1] and p > 0. The class of PLFM systems (G(w(p)
p,q), ρ∗) is of order 2 and type

1, with generalized dimension

d =
1

p
.

Proof. See Appendix C-G.

Compared to the class of ELFM systems, which exhibits order 1, the class of PLFM systems is more
massive as it has order 2. This is intuitively meaningful as polynomial decay is significantly slower than
exponential decay, rendering PLFM systems to depend more strongly on past inputs. Additionally, the
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generalized dimension exhibiting inverse proportionality to p, reflects that faster (polynomial) decay, i.e.,
larger p, leads to smaller description complexity.

V. REALIZING LFM SYSTEMS THROUGH RNNS

We now proceed to realize the elements in the ϵ-net for (G0(w), ρ0) constructed in Lemma III.9 by
ReLU networks. Based on the connection between (G0(w), ρ0) and (G(w), ρ∗) identified in Section III,
this will then allow us to construct RNNs approximating general LFM systems.

A. Approximating (G0(w), ρ0) with ReLU networks

The building block in Lemma III.9 for approximating functionals in G0(w) is the p.o.u. Ξ = {ϕ(· −
n)}n∈M, which is why we first focus on constructing ReLU networks realizing Ξ. As the elements of
Ξ are shifted versions of the spike function ϕ and shifts, by virtue of being affine transformations, are
trivially realized by single-layer ReLU networks, it suffices to find a ReLU network realization of ϕ. Note
that this argument made use of the fact that compositions of ReLU networks are again ReLU networks
(see Lemma C.3).

Lemma V.1. For d ∈ N, consider the spike function ϕ : Rd → R,

ϕ(z) = max{1 + min{z1, . . . , zd, 0} −max{z1, . . . , zd, 0}, 0}. (54)

There exists a ReLU network Φ ∈ Nd,1 with L(Φ) = ⌈log(d+ 1)⌉+4, M(Φ) ≤ 60d− 28, W(Φ) ≤ 6d,
K(Φ) = {1,−1}, and B(Φ) = 1, such that

Φ(z) = ϕ(z), for all z ∈ Rd. (55)

Proof. Let Φmax
d be the ReLU network realization of max{z1, z2, . . . , zd} according to Lemma C.2.

Then, using min{z1, z2, . . . , zd} = −max{−z1,−z2, . . . ,−zd}, we obtain

ϕ(z) = ρ(1− ρ(Φmax
d (−z))− ρ(Φmax

d (z)))

= ((W3 ◦ ρ ◦W2 ◦ ρ ◦ P (Φmax
d ,Φmax

d ))︸ ︷︷ ︸
=:Φ2

◦ W1︸︷︷︸
=:Φ1

)(z), (56)

where W1(z) =
(
Id −Id

)T
z, W2(z) =

(
−1 −1

)
z + 1, W3(z) = z, and P (Φmax

d ,Φmax
d ) is

the parallelization of two Φmax
d -networks according to Lemma C.4 such that P (Φmax

d ,Φmax
d )(z) =

(Φmax
d (z),Φmax

d (z))T . Now, by Lemma C.3, there exists a ReLU network Φ realizing Φ2 ◦ Φ1 in (56),
with
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L(Φ) Lemma C.3
= L(Φ2) + L(Φ1)

Lemma C.2, C.4
= ⌈log(d+ 1)⌉+ 4,

M(Φ)
Lemma C.3

≤ 2M(Φ1) + 2M(Φ2)

Lemma C.4
= 2M(W3) + 2M(W2) + 2M(W1) + 4M(Φmax

d )

Lemma C.2
≤ 60d− 28,

W(Φ)
Lemma C.3

≤ max {4d,max{W(Φ2),W(Φ1)}}
Lemma C.4

≤ max {4d, 2W(Φmax
d ),W(W3),W(W2),W(W1)}

Lemma C.2
≤ 6d,

K(Φ)
Lemma C.3

⊂ (K(Φ2) ∪ (−K(Φ2) ∪ (K(Φ1) ∪ (−K(Φ1)

Lemma C.4
=

(
3⋃

i=1

(K(Wi) ∪ (−K(Wi))

)⋃
(K(Φmax

d ) ∪ (−K(Φmax
d ))

Lemma C.2
= {1,−1},

B(Φ) = max
b∈K(Φ)

|b| = 1.

This concludes the proof.

We now show how the elements of the ϵ-net constructed in Lemma III.9 can be realized by ReLU
networks. In particular, our constructions will be seen to be encodable by bitstrings of finite length,
accomplished by quantizing the network weights according to Definition II.2. This will be needed to
establish metric-entropy optimality in Section VI.

Lemma V.2. For every s ≥ 1, there exists ϵ0 > 0, such that for ϵ ∈ (0, ϵ0), with

T := max

{
ℓ ∈ N

∣∣∣ w[ℓ] > ϵ

D

s

s+ 1

}
,

for every g ∈ G0(w), there exists a Φ ∈ NT+1,1 with (2, ϵ)-quantized weights (Definition II.2) satisfying∣∣∣Φ({x[−ℓ]}Tℓ=0

)
− g(x)

∣∣∣ ≤ ϵ, for all x ∈ S−.

Moreover,

L(Φ) = ⌈log(T + 2)⌉+ 6 and M(Φ) ≤ 244(T + 1)

T∏
ℓ=0

(
2Dw[ℓ]

ϵ

s+ 1

s
+ 4

)
. (57)

Proof. Fix g ∈ G0(w). To construct a (2, ϵ)-quantized ReLU network for the approximation of g, we
follow the spirit of the proof of Lemma III.9 and first consider

ĝ(x) =
∑
n∈N

g(x̂n)ϕ

({
x[−ℓ]

δℓ
− nℓ

}T

ℓ=0

)
, (58)
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with
δℓ :=

s

s+ 1

ϵ

w[ℓ]
, ∀ℓ ∈ JT K ,

Nℓ :=

⌈
D

δℓ

⌉
, ∀ℓ ∈ JT K ,

N := JN0K± × · · · × JNT K± ⊂ RT+1,

x̂n[−ℓ] :=

δℓnℓ, if ℓ ≤ T ,

0, else.

(59)

It was shown in (31) that
|ĝ(x)− g(x)| ≤ sϵ

s+ 1
, for all x ∈ S−. (60)

We next quantize the parameters δ−1ℓ in (58) according to

δ̃−1ℓ := Q2,ϵ(δ
−1
ℓ ), (61)

and adjust the grid points x̂n of the lattice N as

Ñℓ =

⌈
D

δ̃ℓ

⌉
, ℓ ∈ JT K ,

Ñ =
r
Ñ0

z±
× · · · ×

r
ÑT

z±
,

x̃n[−ℓ] =

δ̃ℓnℓ if ℓ ≤ T ,

0 else.

(62)

Furthermore, we quantize g(x̃n) according to

g̃n := Q2,ϵ(g(x̃n)) (63)

and consider the function

g̃(x) =
∑
n∈Ñ

g̃nϕ

({
x[−ℓ]

δ̃ℓ
− nℓ

}T

ℓ=0

)
=: f

(
{x[−ℓ]}Tℓ=0

)
. (64)

For ease of notation, we define k : S− → RT+1 as kℓ(x) := δ̃−1ℓ x[−ℓ], for ℓ ∈ JT K. Next, we show that

|g̃(x)− g(x)| ≤ ϵ. (65)
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This follows from

|g̃(x)− g(x)| =

∣∣∣∣∣∣
∑

∥k(x)−n∥∞≤1

(g(x)− g̃n)ϕ(k(x)− n)

∣∣∣∣∣∣ (66)

≤
∑

∥k(x)−n∥∞≤1

(|(g(x)− g(x̃n))|+ |(g(x̃n)− g̃n)|)ϕ(k(x)− n) (67)

≤
∑

∥k(x)−n∥∞≤1

(
∥x− x̃n∥w +

ϵ

s+ 1

)
ϕ(k(x)− n) (68)

≤ ϵ
∑

∥k(x)−n∥∞≤1

ϕ(k(x)− n) (69)

≤ ϵ. (70)

Here, (66) and (70) are by the p.o.u. property of ϕ and (68) is a consequence of the Lipschitz property
of g according to (11) and

|g(x̃n)− g̃n| = |g(x̃n)−Q2,ϵ(g(x̃n))|

≤ 2−2⌈log(ϵ
−1)⌉ (189)

≤ ϵ

s+ 1
.

(71)

Furthermore, (69) follows from the fact that for ∥k(x)− n∥∞ ≤ 1, we have∣∣∣∣x[−ℓ]

δ̃ℓ
− nℓ

∣∣∣∣ ≤ 1, for all ℓ ∈ JT K ,

and hence
∥x− x̃n∥w ≤ max

ℓ∈JT K
δ̃ℓw[ℓ] ≤

sϵ

s+ 1
, (72)

where the second inequality in (72) is by

δ̃ℓ
(61)
=
(
Q2,ϵ

(
δ−1ℓ

))−1 ≤ δℓ =
s

s+ 1

ϵ

w[ℓ]
.

Based on (64), we can rewrite (65) according to∣∣∣f ({x[−ℓ]}Tℓ=0

)
− g(x)

∣∣∣ ≤ ϵ, for all x ∈ S−. (73)

It hence suffices to construct a ReLU network Φ that realizes f , which then, thanks to (73), approximates
g to within an error of at most ϵ. To this end, assume that n1, n2, . . . , n|Ñ| is an arbitrary, but fixed,
enumeration of the elements of Ñ. Set W̃Σ(x) = Λx and Ŵni(x) := B̂x+ b̂ni , with

Λ =
(
g̃n1 g̃n2 . . . g̃

n|Ñ|

)
,

B̂ = diag
(
δ̃−10 , δ̃−11 , . . . , δ̃−1T

)
,

b̂ni =
(
−ni

0 −ni
1 . . . −ni

T

)T
.

(74)

Moreover, let Ψ be a ReLU network realizing the spike function ϕ according to Lemma V.1 and define
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the following ReLU networks

Φ2 := W̃Σ,

Φni

1,2 := Ψ, for i = 1, . . . , |Ñ|,

Φni

1,1 := Ŵni , for i = 1, . . . , |Ñ|.

(75)

Now, we apply Lemma C.3 to compose Φni

1,2 and Φni

1,1 in order to realize the shifted versions of the spike
function according to(

Φni

1,2 ◦ Φni

1,1

)(
{x[−ℓ]}Tℓ=0

)
= ϕ

({
x[−ℓ]

δ̃ℓ
− ni

ℓ

}T

ℓ=0

)
, for i = 1, 2, . . . , |Ñ|.

Then, we apply Lemma C.4 to construct a ReLU network as the parallelization of the compositions
Φni

1,2 ◦ Φni

1,1, for i = 1, 2, . . . , |Ñ|,

Φ1 := P
((

Φn1

1,2 ◦ Φn1

1,1

)
,
(
Φn2

1,2 ◦ Φn2

1,1

)
, . . . ,

(
Φn|Ñ|

1,2 ◦ Φ|Ñ|1,1

))
. (76)

Finally, we apply Lemma C.3 again to get a ReLU network that composes Φ2 and Φ1 according to

Φ = Φ2 ◦ Φ1 = Φ2 ◦ P
((

Φn1

1,2 ◦ Φn1

1,1

)
,
(
Φn2

1,2 ◦ Φn2

1,1

)
, . . . ,

(
Φn|Ñ|

1,2 ◦ Φ|Ñ|1,1

))
, (77)

thereby realizing the linear combination∑
n∈Ñ

g̃nϕ

({
x[−ℓ]

δ̃ℓ
− nℓ

}T

ℓ=0

)
(64)
= f

(
{x[−ℓ]}Tℓ=0

)
.

To conclude the proof, we verify that Φ, indeed, has (2, ϵ)-quantized weights, compute L(Φ), and
derive an upper bound on M(Φ). We defer the corresponding details to Appendix C-I.

B. Approximating the system space (G(w), ρ∗) using RNNs

Having constructed ReLU networks that realize elements of G0(w) according to Lemma V.2, we are
now ready to describe the realization of systems in G(w) through RNNs. This will be done by employing
the connection between G(w) and G0(w), as established in Lemma III.4. Specifically, we construct RNNs
that remember past inputs and produce approximations of the desired output

Theorem V.3. For every s ≥ 1, there exists ϵ0 > 0, such that for ϵ ∈ (0, ϵ0), with

T := max

{
ℓ ∈ N

∣∣∣ w[ℓ] > ϵ

D

s

s+ 1

}
,

for every G ∈ G(w), there is an RNN RΨ associated with a ReLU network Ψ ∈ NT+1,T+1, satisfying

ρ∗(RΨ, G) ≤ ϵ.

Moreover, RΨ has (2, ϵ)-quantized weights and there exists a universal constant C > 0 such that

M(Ψ) ≤ C(T + 1)2
T∏

ℓ=0

(
2Dw[ℓ]

ϵ

s+ 1

s
+ 4

)
. (78)
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Proof. Fix s ≥ 1 and G ∈ G(w) arbitrarily. We proceed in two steps.

Step 1: We construct a ReLU network Φ : RT+1 → R such that

sup
x∈S+

sup
t∈N

∣∣Φ ({x[t− ℓ]}Tℓ=0

)
−G(x)[t]

∣∣ ≤ ϵ. (79)

To this end, we first note that by Lemma III.4, one can find a g ∈ G0(w) so that

g (PT−tx) = G(x)[t], for all x ∈ S and t ∈ Z. (80)

Furthermore, by Lemma V.2, there exists ϵ0 > 0, such that for every ϵ ∈ (0, ϵ0), there is a ReLU network
Φ satisfying ∣∣∣Φ({z[−ℓ]}Tℓ=0

)
− g(z)

∣∣∣ ≤ ϵ, for all z ∈ S−. (81)

Next, fix an input x ∈ S+ and a time index t ∈ N and define

z′ := PT−t{x}. (82)

Note that

z′[ℓ] = 0, for ℓ > 0, and hence z′ ∈ S−,

z′[−ℓ] = x[t− ℓ], for ℓ ≥ 0.
(83)

Inserting z′ from (82) into (81) and using (83) and (80), it follows that∣∣Φ ({x[t− ℓ]}Tℓ=0

)
−G(x)[t]

∣∣ ≤ ϵ.

As x ∈ S− and t ∈ N were arbitrary, this proves (79).

Step 2: We construct an RNN RΨ realizing the map x → Φ
(
{x[t− ℓ]}Tℓ=0

)
t∈N.

Fix x ∈ S+ arbitrarily. Recall the RNN Definition II.4. The basic idea is to identify an RNN RΨ which,
for every time step t ∈ N,

• delivers the output
y[t] = Φ

(
{x[t− ℓ]}Tℓ=0

)
(84)

• and memorizes the T past inputs x[t], x[t− 1], . . . , x[t− T + 1] in the hidden state vector h[t], i.e.,

hℓ[t] = x[t− ℓ+ 1], for ℓ ∈ {1, 2, . . . , T}. (85)

To memorize the T past inputs, we construct a one-layer neural network

ΦT (z) =
(
IT 0T

)
z, for z ∈ RT+1, (86)

by noting that
ΦT

(
{x[t− ℓ]}Tℓ=0

)
=
(
IT 0T

)
(x[t], x[t− 1], . . . , x[t− T ])T

= (x[t], x[t− 1], . . . , x[t− T + 1])T ∈ RT .
(87)

Now, we apply Lemma C.5 to augment ΦT to depth L(Φ) without changing its input-output relation.
This results in the ReLU network Φ∗T . Then, we apply Lemma C.4 to parallelize Φ and Φ∗T leading to
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the desired ReLU network
Ψ = P (Φ,Φ∗T ). (88)

By Definition II.4, the corresponding RNN RΨ effects the input-output mapping according to(
y[t]

h[t]

)
= Ψ

((
x[t]

h[t− 1]

))
, for all t ≥ 0.

With these choices, (84) and (85) can now be proved by induction over t ≥ 0. The base case is
immediate, as x[t] = 0, for t < 0 owing to x ∈ S+ and, by Definition II.4, h[−1] = 0T . To establish the
induction step, we assume that (84) and (85) hold for t− 1 with t ∈ N, i.e.,

y[t− 1] = Φ
(
{x[t− 1− ℓ]}Tℓ=0

)
,

hℓ[t− 1] = x[t− ℓ], for ℓ ∈ {1, 2, . . . , T}.

Now, for time step t, we note that

Ψ

((
x[t]

h[t− 1]

))
= P (Φ,Φ∗T )

((
x[t]

h[t− 1]

))

=

(
Φ
(
{x[t− ℓ]}Tℓ=0

)
Φ∗T
(
{x[t− ℓ]}Tℓ=0

))

=

(
Φ
(
{x[t− ℓ]}Tℓ=0

)
(x[t], x[t− 1], . . . , x[t− T + 1])T

)

=

(
Φ
(
{x[t− ℓ]}Tℓ=0

)
h[t]

)
.

As x was arbitrary, this completes the induction and thereby Step 2.

To conclude, we combine the results in Steps 1 and 2 according to

ρ∗(RΨ, G) = sup
x∈S+

sup
t∈N

|y[t]−G(x)[t]| (89)

= sup
x∈S+

sup
t∈N

∣∣Φ ({x[t− ℓ]}Tℓ=0

)
−G(x)[t]

∣∣ (90)

≤ ϵ, (91)

where (90) follows from (84) and (91) is by (79). Furthermore, we have

K(Ψ)
(88), Lemma C.4

= (K(Φ)) ∪ (K(Φ∗T ))

Lemma C.5
⊂ (K(Φ)) ∪ (K(ΦT )) ∪ (−K(ΦT )) ∪ {1,−1}

(86)
= (K(Φ)) ∪ {1,−1}

Lemma V.2
⊂ 2−2⌈log(ϵ

−1)⌉Z ∩
[
−ϵ−2, ϵ−2

]
.
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Thus, Ψ has (2, ϵ)-quantized weights. Moreover, we can obtain an upper bound on M(Ψ) according to

M(Ψ)
(88), Lemma C.4

= M(Φ) +M(Φ∗T )

(86), Lemma C.5
≤ M(Φ) +M(ΦT ) + TW(ΦT ) + 2T (L(Φ)− L(ΦT ))

(86), Lemma V.2
≤ C(T + 1)2

T∏
ℓ=0

(
2Dw[ℓ]

ϵ

s+ 1

s
+ 4

)
,

with the universal constant C > 0 chosen sufficiently large.

VI. METRIC-ENTROPY-OPTIMAL REALIZATIONS OF ELFM AND PLFM SYSTEMS

So far we have characterized the description complexity of ELFM and PLFM systems based on order,
type, and generalized dimension (Section IV) and we constructed RNNs approximating general LFM
systems (Section V). We are now ready to state the main results of the paper, namely that the RNNs we
constructed are optimal for ELFM and PLFM system approximation in terms of description complexity.

To this end, we first compute the number of bits needed by the canonical RNN decoder in Definition
II.7 to obtain the RNN constructed in Theorem V.3, specifically its topology and quantized weights. The
following result holds for general LFM systems and will later be particularized to ELFM and PLFM
systems.

Corollary VI.1. The class of LFM systems (G(w), ρ∗) is representable by the canonical RNN decoder
DR with

L(ϵ;DR,G(w), ρ∗) ≤ C1M log(M) log(ϵ−1),

where

M := (T + 1)2
T∏

ℓ=0

(
12Dw[ℓ]

ϵ

)
,

T := max
{
ℓ ∈ N

∣∣∣ w[ℓ] > ϵ

2D

}
,

and C1 > 0 is a universal constant.

Proof. Applying Theorem V.3 and setting s = 1, it follows that there exists an ϵ0 > 0, such that for
every ϵ ∈ (0, ϵ0) and every G ∈ G(w), we can find an RNN RΨ associated with a ReLU network
Ψ ∈ NT+1,T+1, satisfying

ρ∗(RΨ, G) ≤ ϵ. (92)

Moreover, RΨ has (2, ϵ)-quantized weights and the number of non-zero weights in Ψ can be upper-
bounded according to

M(Ψ) ≤ C(T + 1)2
T∏

ℓ=0

(
4Dw[ℓ]

ϵ
+ 4

)
. (93)

By the definition of the canonical neural network decoder, Remark II.3, and Definition II.7, there exists
a bitstring b ∈ {0, 1}L with

L ≤ 2C0M(Ψ) log(M(Ψ)) log(ϵ−1), (94)
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such that
DR(b) = RΨ. (95)

Combining (92), (94), (95), and Definition II.9, upon noting that G was chosen arbitrarily, it follows that
(G(w), ρ∗) is representable by the canonical RNN decoder DR, with the minimum number of required
bits satisfying

L(ϵ;DR,G(w), ρ∗) ≤ 2C0M(Ψ) log(M(Ψ)) log(ϵ−1) (96)

≤ 2C0C(T + 1)2

[
T∏

ℓ=0

(
12Dw[ℓ]

ϵ

)]
log(ϵ−1)

log

(
C(T + 1)2

(
T∏

ℓ=0

(
12Dw[ℓ]

ϵ

)))
(97)

≤ 2C0CC ′(T + 1)2

[
T∏

ℓ=0

(
12Dw[ℓ]

ϵ

)]
log(ϵ−1)

log

(
(T + 1)2

T∏
ℓ=0

(
12Dw[ℓ]

ϵ

))
(98)

= C1M log(M) log(ϵ−1), (99)

where (96) is a consequence of (94) and Definition II.9, (97) follows from (93) and the fact that
2Dw[ℓ]/ϵ > 1, for ℓ ∈ JT K, (98) holds upon choosing the universal constant C ′ sufficiently large,
namely s.t.

log

(
C(T + 1)2

(
T∏

ℓ=0

(
12Dw[ℓ]

ϵ

)))
≤ C ′ log

(
(T + 1)2

(
T∏

ℓ=0

(
12Dw[ℓ]

ϵ

)))
,

and (99) follows by setting C1 := 2C0CC ′.

A. RNNs can optimally learn ELFM systems

We now particularize the result in Corollary VI.1 to ELFM systems, which allows us to determine the
growth rate of the minimum number of bits L(ϵ;DR,G(w(e)

a,b), ρ∗) needed to represent (G(w(e)
a,b), ρ∗)

by the canonical RNN decoder DR with respect to the prescribed error ϵ. A comparison with the
description complexity of (G(w(e)

a,b), ρ∗) established in Lemma IV.3 then allows us to conclude that RNNs
can optimally learn ELFM systems in a metric-entropy optimal manner.

Theorem VI.2. Let a ∈ (0, 1] and b > 0. The class of ELFM systems (Definition IV.1) (G(w(e)
a,b), ρ∗) is

optimally representable by the canonical RNN decoder DR (Definition II.7).

Proof. By Corollary VI.1, the minimum number of bits L(ϵ;DR,G(w(e)
a,b), ρ∗) needed to represent

(G(w(e)
a,b), ρ∗) by the canonical RNN decoder DR satisfies

L(ϵ;DR,G(w(e)
a,b), ρ∗) ≤ C1M log(M) log(ϵ−1), (100)
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where

M := (T + 1)2
T∏

ℓ=0

12Dw
(e)
a,b[ℓ]

ϵ

 ,

T := max
{
ℓ ∈ N

∣∣∣ w(e)
a,b[ℓ] >

ϵ

2D

}
.

By Lemma IV.3, (G(w(e)
a,b), ρ∗) is of order 1 and type 2, with generalized dimension

d =
1

2b log(e)
.

Thus, by Lemma II.13 and Definition II.14, it suffices to prove that

lim
ϵ→0

log
(
C1M log(M) log(ϵ−1)

)
log2(ϵ−1)

=
1

2b log(e)
. (101)

To this end, we first note that

log(M) = 2 log(T + 1) + log

 T∏
ℓ=0

12Dw
(e)
a,b[ℓ]

ϵ

 (102)

= O(log(2)(ϵ−1)) +
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
(103)

=
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
, (104)

where (103) follows from Lemma IV.2 and T + 1 = O(log(ϵ−1)) thanks to (154). Now, we rewrite the
numerator in (101) according to

log
(
C1M log(M) log(ϵ−1)

)
= log(M) + log(2)(M) + o

(
log2(ϵ−1)

)
(105)

=
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
+ log

(
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

))
(106)

=
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
. (107)

Dividing (107) by log2(ϵ−1) and taking ϵ → 0, concludes the proof.

B. RNNs can optimally learn PLFM systems

We next particularize the result in Corollary VI.1 to PLFM systems and will see that the minimum
number of bits L(ϵ;DR,G(w(p)

p,q), ρ∗) required to represent (G(w(p)
p,q), ρ∗) by the canonical RNN decoder

DR grows significantly faster (with respect to the prescribed error ϵ) than for ELFM systems. This can
be attributed to the fact that the memory of PLFM systems decays much more slowly and the increased
complexity reflects this longer memory. Nonetheless, as shown next, RNNs can learn PLFM systems in
a metric-entropy-optimal manner.
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Theorem VI.3. Let q ∈ (0, 1] and p > 0. The class of PLFM systems (G(w(p)
p,q), ρ∗) (Definition IV.4) is

optimally representable by the canonical RNN decoder DR (Definition II.7).

Proof. By Corollary VI.1, the minimum number of bits L(ϵ;DR,G(w(p)
p,q), ρ∗) needed to represent

(G(w(p)
p,q), ρ∗) by the canonical RNN decoder DR satisfies

L(ϵ;DR,G(w(p)
p,q), ρ∗) ≤ C1M log(M) log(ϵ−1), (108)

where

M := (T + 1)2
T∏

ℓ=0

(
12Dw

(p)
p,q [ℓ]

ϵ

)
,

T := max
{
ℓ ∈ N

∣∣∣ w(p)
p,q [ℓ] >

ϵ

2D

}
.

By Lemma IV.6, (G(w(p)
p,q), ρ∗) is of order 2 and type 1, with generalized dimension

d =
1

p
.

Thus, by Lemma II.13 and Definition II.14, it suffices to prove that

lim
ϵ→0

log(2)
(
C1M log(M) log(ϵ−1)

)
log(ϵ−1)

=
1

p
. (109)

To this end, we first note that

log(M) = 2 log(T + 1) + log

(
T∏

ℓ=0

(
12Dw

(p)
p,q [ℓ]

ϵ

))
(110)

= O(log(ϵ−1)) + Θ(ϵ−1/p) (111)

= Θ(ϵ−1/p), (112)

where (111) follows from Lemma IV.5 and (160). Now, we rewrite the numerator in (109) according to

log(2)
(
C1M log(M) log(ϵ−1)

)
= log

(
log(M) + log(2)(M) + o

(
log(ϵ−1)

))
(113)

= log
(
Θ(ϵ−1/p) + log

(
Θ(ϵ−1/p)

)
+ o

(
log(ϵ−1)

))
(114)

= log
(
Θ(ϵ−1/p)

)
, (115)

where (115) follows from

Θ(ϵ−1/p) + log
(
Θ(ϵ−1/p)

)
+ o

(
log(ϵ−1)

)
= Θ(ϵ−1/p).

Finally, dividing (115) by log(ϵ−1) and taking ϵ → 0, concludes the proof.

VII. CONCLUSION

Returning to Table I, we note that it can be complemented by our results for ELFM and PLFM systems
as summarized in Table II below. As both classes of systems in Table II are optimally representable by the
canonical RNN decoder (Definition II.7), we can conclude that, remarkably, the metric-entropy-optimal
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universality of ReLU networks extends from function classes to nonlinear systems, in the latter case
simply by embedding the network in a recurrence. Moreover, the description complexity of the LFM
systems to be learned can be matched simply by adjusting the complexity of the inner ReLU network of
the RNN.

Metric C k λ d

{RZ → RZ} ρ∗ (Def. II.20) ELFM systems (Section IV-A) G(w(e)
a,b) 1 2 1

2b log e

{RZ → RZ} ρ∗ (Def. II.20) PLFM systems (Section IV-B) G(w(p)
p,q) 2 1 1

p

TABLE II: Scaling behavior of the covering numbers (Definition II.12) for classes of nonlinear systems.

Finally, we remark that many of the results in this paper apply to LFM systems with general weight
sequences w[·], specifically the bounds in Section II-C on the exterior covering number of (G(w), ρ∗) as
well as the RNN constructions in Section V.
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APPENDIX A
REPRESENTING A NEURAL NETWORK BY A BITSTRING.

Definition A.1. Let Φ be a ReLU network with (m, ϵ)-quantized weights. Denote the number of non-zero
weights by M := M(Φ). We organize the bitstring representation of Φ in 6 segments as follows.

[Segment 1] The bitstring starts with M 1’s followed by a single 0.
[Segment 2] L(Φ) is specified in binary representation. As L(Φ) ≤ M , it suffices to allocate ⌈logM⌉

bits.
[Segment 3] N0, . . . , NL ≤ M are specified in binary representation using a total of (M + 1)⌈logM⌉

bits.
[Segment 4] The topology of the network, i.e., the locations of the non-zero entries in the Aℓ and bℓ,

ℓ ∈ {1, . . . , L}, is encoded as follows. We denote the bitstring corresponding to the binary
representation of an integer i ∈ {1, . . . ,M} by b(i) ∈ {0, 1}⌈log(M)⌉. For ℓ ∈ {1, . . . , L},
i ∈ {1, . . . , Nℓ}, j ∈ {1, . . . , Nℓ−1}, a non-zero entry (Aℓ)ij is indicated by [b(ℓ), b(i), b(j)]

and a non-zero entry (bℓ)i by [b(ℓ), b(i), b(i)]. Thus, encoding the topology of the network
requires a total of 3⌈logM⌉M bits.

[Segment 5] The quantity m
⌈
log(ϵ−1)

⌉
is represented by a bitstring of that many 1’s followed by a single

0.
[Segment 6] The value of each non-zero weight and bias is represented by a bitstring of length Bϵ =

2m
⌈
log ϵ−1

⌉
+ 1.

The overall length of the bitstring is now given by

M + 1︸ ︷︷ ︸
Segment 1

+ ⌈logM⌉︸ ︷︷ ︸
Segment 2

+(M + 1)⌈logM⌉︸ ︷︷ ︸
Segment 3

+3⌈log(M)⌉M︸ ︷︷ ︸
Segment 4

+m
⌈
log(ϵ−1)

⌉
+ 1︸ ︷︷ ︸

Segment 5

+ MBϵ︸ ︷︷ ︸
Segment 6

. (116)

The ReLU network Φ can be recovered by sequentially reading out M ,L, the Nℓ, the topology, the
quantity m

⌈
log(ϵ−1)

⌉
, and the quantized weights from the overall bitstring. It is not difficult to verify

that the bitstring is crafted such that this yields unique decodability.

APPENDIX B
COMPARISON WITH [7]

As mentioned in Section II-B, compared to [7], we use refined notions of massiveness of sets, as the
system classes we consider are significantly more massive than the function classes dealt with in [7]. We
next detail how the results from [7] fit into our framework.

In [7] the scaling behavior of covering numbers is quantified in terms of the optimal exponent γ∗ [7,
Definition IV.1]. The following result relates γ∗ to the generalized dimension employed here (Definition
II.12).

Lemma B.1. Let d ∈ N, Ω ⊆ Rd, and let C ⊂ L2(Ω) be compact and such that the optimal exponent
γ∗(C) according to [7, Definition IV.1] is finite and non-zero. Then, C is, with respect to the metric
ρ(f, g) := ∥f − g∥L2(Ω), of order κ = 1, type τ = 1, and generalized dimension

d =
1

γ∗
.
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Proof. For order κ = 1 and type λ = 1, the generalized dimension is given by

d = lim sup
ϵ→0

log(2)N ext(ϵ; C, ρ)
log (ϵ−1)

. (117)

We note that by [34, Remark 5.10], it holds that

γ∗ = sup
{
γ > 0 : logN ext(ϵ; C, ρ) ∈ O

(
ϵ−1/γ

)
, ϵ → 0

}
. (118)

We first establish that d ≤ 1
γ∗ . To this end, fix ∆ > 0 arbitrarily and observe that logN ext(ϵ; C, ρ) ∈

O
(
ϵ−1/(γ

∗−∆)
)
. Hence, there exist ϵ0, C > 0 such that

logN ext(ϵ; C, ρ) ≤ Cϵ−1/(γ
∗−∆), ∀ϵ ∈ (0, ϵ0),

and thus

d = lim sup
ϵ→0

log(2)N ext(ϵ; C, ρ)
log (ϵ−1)

≤ lim sup
ϵ→0

(
1

γ∗ −∆
+

log(C)

log (ϵ−1)

)
=

1

γ∗ −∆
. (119)

As ∆ > 0 was arbitrary, we have established that d ≤ 1
γ∗ .

Next, we show that d ≥ 1
γ∗ . Again, fix ∆ > 0 arbitrarily. By (117), there exists an ϵ0 > 0 such that

for all ϵ ∈ (0, ϵ0),
log(2)N ext(ϵ; C, ρ)

log (ϵ−1)
≤ d+∆. (120)

This implies
logN ext(ϵ; C, ρ) ≤ ϵ−(d+∆), ∀ϵ ∈ (0, ϵ0), (121)

and thus logN ext(ϵ; C, ρ) ∈ O
(
ϵ−1/(d+∆)−1

)
. Hence, γ∗ ≥ (d+∆)−1. As ∆ was arbitrary, this finalizes

the proof.

Table I in the present paper now follows from [7, Table I] by application of Lemma B.1. Furthermore,
[7] shows through the transference principle [7, Section VII] that these function classes are optimally
representable by neural networks [7, Definition VI.5]. The following Lemma hence allows us to conclude
that every row in Table I is optimally representable (according to Definition II.14) by the canonical neural
network decoder.

Lemma B.2. Let d ∈ N, Ω ⊆ Rd, and let C ⊂ L2(Ω) be compact. If the function class C ⊂ L2(Ω)

is optimally representable by neural networks according to [7, Definition VI.5], then (C, ρ) is optimally
representable by the canonical neural network decoder with respect to the metric ρ(f, g) := ∥f−g∥L2(Ω).

Proof. First, we note that by Lemma B.1 C is of order κ = 1, type τ = 1, and has generalized dimension
d = 1

γ∗(C) . By [7, Definition VI.5], we have γ∗(C) = γ∗,eff
N (C). Next, fix ∆ > 0 arbitrarily. Now, following

the proof of [7, Theorem VI.4, p. 2602] with γ∗,eff
N −∆ in place of γ, we can conclude the existence of a

polynomial π∗, a constant C, and a map Ψ : (0, 12)× C → Nd,1 with the following properties. For every
f ∈ C and every ϵ ∈ (0, 12), the network Φ̃ϵ,f = Ψ(ϵ, f) has (

⌈
π∗(log(ϵ−1))

⌉
, ϵ)-quantized weights and

satisfies
∥f − Φ̃ϵ,f∥L2(Ω) ≤ ϵ and M(Φ̃ϵ,f ) ≤ Cϵ−1/(γ

∗,eff
N −∆) =: Mϵ.
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Thus, Φ̃ϵ,f can, according to Remark II.3, be reconstructed uniquely by the canonical neural network
decoder DN from a bitstring of length no more than

C0

⌈
π∗(log(ϵ−1))

⌉
log(ϵ−1)Mϵ log(Mϵ).

Therefore, C is representable by the canonical neural network decoder DN with L(ϵ;DN , C, ρ) ≤
C0Mϵ log(Mϵ) log

q0(ϵ−1), where q0 is a constant depending on π∗ only, and hence

logL(ϵ;DN , C, ρ) ≤
1

γ∗,eff
N −∆

log(ϵ−1) + o(log(ϵ−1)). (122)

As ∆ > 0 was arbitrary, we thus get

lim sup
ϵ→0

logLDN (ϵ; C)
log(ϵ−1)

≤ 1

γ∗,eff
N

, (123)

which, together with Lemma II.13 and the fact that d = 1
γ∗ = 1

γ∗,eff
N

implies that C is optimally representable
by the canonical neural network decoder according to Definition II.14.

APPENDIX C
PROOFS

A. Proof of Lemma II.13

To simplify notation, we set L(ϵ) := L(ϵ;D, C, ρ). We first establish that

L(ϵ) ≥ logN ext(ϵ; C, ρ)− 1, ∀ϵ > 0. (124)

By way of contradiction, assume that

2L(ϵ)+1 < N ext(ϵ; C, ρ), for some ϵ > 0.

It then follows from Definition II.9 that for this ϵ, for every f ∈ C, there is an integer ℓ ≤ L(ϵ) and a
bitstring bf ∈ {0, 1}ℓ, such that ρ(D(bf ), f) ≤ ϵ. This directly implies that the set

U :=

D(b)

∣∣∣∣∣∣b ∈
L(ϵ)⋃
ℓ=0

{0, 1}ℓ
 ,

is an ϵ-net for C. Furthermore,

|U| ≤
L(ϵ)∑
ℓ=0

2ℓ =
2L(ϵ)+1 − 1

2− 1
≤ 2L(ϵ)+1 < N ext(ϵ; C, ρ).

Hence, U is an ϵ-net of cardinality strictly smaller than N ext(ϵ; C, ρ), which stands in contradiction to
Definition II.11 and so (124) must hold. This, in turn, implies that

lim sup
ϵ→0

log(κ) L(ϵ)

logτ (ϵ−1)
≥ lim sup

ϵ→0

log(κ) (logN ext(ϵ; C, ρ∗)− 1)

logτ (ϵ−1)

= lim sup
ϵ→0

log(κ+1)N ext(ϵ; C, ρ∗)
logτ (ϵ−1)

= d,

as desired.
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B. Proof of Lemma II.21

Fix G,G′ ∈ G(w). First, note that

ρ∗(G,G′) = sup
x∈S+

sup
t∈N

|(Gx)[t]− (G′x)[t]|

≤ sup
x∈S

sup
t∈Z

|(Gx)[t]− (G′x)[t]|. (125)

Next, arbitrarily fix a ∆ > 0. By definition of the supremum, it follows that there exist x0 ∈ S and
e ∈ Z, such that

sup
x∈S

sup
t∈Z

|(Gx)[t]− (G′x)[t]| −∆/2 ≤
∣∣(Gx0)[e]− (G′x0)[e]

∣∣ . (126)

Since limt→∞w[t] = 0, there exists T > 0 so that w[t] ≤ ∆/(4D), for all t > T . Next, define

x1[t] = x0[t− (T − e)] ∈ S and y[t] = x1[t] · 1{t≥0} ∈ S+.

We then get

sup
τ≥0

|w[τ ](x1[T − τ ]− y[T − τ ])| = sup
τ>T

|w[τ ]x1[T − τ ]| ≤ sup
τ>T

|w[τ ]D| ≤ ∆/4, (127)

where we used that |x1[·]| ≤ D by Definition II.15. We furthermore obtain

|(Gx1)[T ]− (G′x1)[T ]| ≤ |(Gx1)[T ]− (Gy)[T ]|+ |(G′x1)[T ]− (G′y)[T ]|

+ |(Gy)[T ]− (G′y)[T ]| (128)

≤ ∆/4 + ∆/4 + |(Gy)[T ]− (G′y)[T ]| (129)

= ∆/2 + |(Gy)[T ]− (G′y)[T ]|, (130)

where in (128) we used the triangle inequality and in (129) we invoked the Lipschitz fading-memory
property of G and G′ in combination with (127). Next, note that by time-invariance of G and G′, it holds
that

(Gx1)[T ] = (GT(T−e)x0)[T ] = (T(T−e)Gx0)[T ] = (Gx0)[e],

(G′x1)[T ] = (G′T(T−e)x0)[T ] = (T(T−e)G
′x0)[T ] = (G′x0)[e].

(131)

Combining all these results yields

sup
x∈S

sup
t∈Z

|(Gx)[t]− (G′x)[t]| −∆/2
(126)
≤
∣∣(Gx0)[e]− (G′x0)[e]

∣∣ (131)
=
∣∣(Gx1)[T ]− (G′x1)[T ]

∣∣
(130)
≤ ∆/2 +

∣∣(Gy)[T ]− (G′y)[T ]
∣∣

y∈S+

≤ ∆/2 + sup
x∈S+

sup
t∈N

|(Gx)[t]− (G′x)[t]|

Def. II.20
= ∆/2 + ρ∗(G,G′). (132)
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As ∆ > 0 was arbitrary, we thus have established that

sup
x∈S

sup
t∈Z

|(Gx)[t]− (G′x)[t]| ≤ ρ∗(G,G′),

which, together with (125), completes the proof.

C. Proof of Lemma III.4

Recall the projection operator P : S → S− defined according to

(Px)[t] = x[t] · 1{t≤0}.

First, we need to show that I : G0(w) → G(w) given by

g → I(g), with ((I(g))(x))[t] = g(PT−tx),

is a well-defined map from G0(w) to G(w), i.e., we need to verify that for every g ∈ G0(w), indeed
I(g) ∈ G(w). This will be done by showing that I(g) satisfies the conditions of Definition II.19. We
first verify that I(g) is causal. Note, that for every T ∈ Z, for every x, x′ ∈ S with x[t] = x′[t], ∀t ≤ T ,
it holds that PT−Tx = PT−Tx

′, and hence

((I(g))(x))[T ] = g(PT−Tx) = g(PT−Tx
′) = ((I(g))(x′))[T ].

Thus, I(g) is, indeed, causal according to Definition II.16. Next, we verify time-invariance as follows:

(Tτ (I(g)(x)))[t] = ((I(g))(x))[t− τ ]

= g(PTτ−tx)

= g(PT−tTτx)

= ((I(g))(Tτx))[t].

The Lipschitz fading-memory property of I(g) according to Definition II.18 is established by∣∣((I(g))(x))[t]− ((I(g))(x′))[t]
∣∣ = |g(PT−tx)− g(PT−tx

′)|

≤ sup
τ≥0

|w[τ ]((PT−tx)[−τ ]− (PT−tx
′)[−τ ])| (133)

= sup
τ≥0

|w[τ ](x[t− τ ]− x′[t− τ ])|, ∀t ∈ Z,∀x, x′ ∈ S,

where in (133) we used (11). Finally, we observe that, by (11),

((I(g))(0))[t] = g(PT−t0) = g(0) = 0, ∀t ∈ Z.

In summary, we have thus shown that I(g) ∈ G(w) and hence I is, indeed, well-defined.
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Furthermore, we have

ρ∗(I(g), I(g′)) = sup
x∈S

sup
t∈Z

∣∣((I(g))(x))[t]− ((I(g′))(x))[t]
∣∣ (134)

= sup
x∈S

sup
t∈Z

|g(PT−tx)− g′(PT−tx)|

= sup
y∈S

|g(Py)− g′(Py)| (135)

= sup
z∈S−

|g(z)− g′(z)|

= ρ0(g, g
′), ∀g ∈ G0(w), ∀g′ ∈ G0(w),

where in (134) we invoked Lemma II.21 and in (135) we used that S is complete under time shifts. This
establishes that I is isometric and consequently injective.

Next, we prove that I is surjective. To this end, we fix G ∈ G(w) arbitrarily, consider

g(s) := (Gs)[0], ∀s ∈ S−, (136)

and show that g ∈ G0(w) as well as I(g) = G. First, we establish that g ∈ G0(w). The Lipschitz property
of g can be verified according to

|g(x)− g(x′)| = |(Gx)[0]− (Gx′)[0]|

≤ sup
τ≥0

|w[τ ](x[−τ ]− x′[−τ ])| (137)

= ∥x− x′∥w, ∀x, x′ ∈ S−, (138)

where in (137) we used the fact that G ∈ G(w) has Lipschitz fading memory (Definition II.18) and (138)
is by (12). Furthermore, we have g(0) = (G0)[0] = 0 and hence g ∈ G0(w).

It remains to show that I(g) = G. To this end, we fix x ∈ S and t ∈ Z arbitrarily and prove that

((I(g))(x))[t] = (Gx)[t].

First, note that (PT−tx)[t
′] = (T−tx)[t

′], for all t′ ≤ 0. By causality of G, we conclude that
(GPT−tx)[0] = (GT−tx)[0], which yields

((I(g))(x))[t] = g(PT−tx)

= (GPT−tx)[0] (139)

= (GT−tx)[0] = (T−tGx)[0] (140)

= (Gx)[t],

where in (139) we used (136), and in (140) we invoked the causality and the time-invariance of G.
As x ∈ S and t ∈ Z were arbitrary, this proves that I(g) = G. Furthermore, since G ∈ G(w) was
arbitrary, we have established that I is surjective. Thus, I is, indeed, an isometric isomorphism between
(G(w), ρ∗) and (G0(w), ρ0). Application of Lemma III.3 then yields N(ϵ;G0(w), ρ0) = N(ϵ;G(w), ρ∗)
and M(ϵ;G0(w), ρ0) = M(ϵ;G(w), ρ∗).
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D. Proof of Lemma III.5

The proof relies on the following auxiliary result.

Lemma C.1. Let w[·] be a weight sequence. The packing number of S− w.r.t. ∥·∥w satisfies

M(ϵ;S−, ∥·∥w) ≥
T∏

ℓ=0

⌈
2Dw[ℓ]

ϵ

⌉
,

with T := max{T ′ ∈ N | w[T ′] > ϵ
2D}.

Proof. For t ∈ JT K, we set Nt :=
⌈
2Dw[t]

ϵ

⌉
∈
[
2Dw[t]

ϵ , 2Dw[t]
ϵ + 1

)
and δt = 2D

Nt−1 > ϵ
w[t] . Now, we

define the set

U := {xi0,...,iT | it ∈ JNt − 1K, for t ∈ JT K} , where (141)

xi0,...,iT :=

−D + itδt, −T ≤ t ≤ 0

0, else
, (142)

and show that U constitutes an ϵ-packing for (S−, ∥·∥w). First, we establish that U ⊂ S− by verifying
that xi0,...,iT [t] ∈ [−D,D], for all t ∈ Z, and xi0,...,iT [t] = 0, for all t > 0, holds for all xi0,...,iT ∈ U .
Indeed, for t ∈ {−T, . . . , 0}, we have

−D ≤ xi0,...,iT [t] = −D + itδt ≤ −D + (Nt − 1)δt = −D + 2D = D,

and for t /∈ {−T, . . . , 0},
xi0,...,iT [t] = 0.

Next, we show that for distinct xi0,...,iT , xj0,...,jT ∈ U , i.e., there is at least one ℓ ∈ JT K such that iℓ ̸= jℓ,
it holds that ∥xi0,...,iT − xj0,...,jT ∥w > ϵ. Indeed, for any such ℓ, we have

∥xi0,...,iT − xj0,...,jT ∥w = sup
t≥0

|w[t] (xi0,...,iT [−t]− xj0,...,jT [−t])|

≥ |w[ℓ] (xi0,...,iT [−ℓ]− xj0,...,jT [−ℓ])|

= |w[ℓ] (−D + iℓδℓ +D − jℓδℓ)|

= (iℓ − jℓ)δℓw[ℓ] > ϵ, (143)

where (143) follows from δℓ > ϵ
w[ℓ] . This establishes that U , indeed, constitutes an ϵ-packing for

(S−, ∥·∥w), and we therefore have

M(ϵ;S−, ∥·∥w) ≥ |U| =
T∏

ℓ=0

Nt =

T∏
ℓ=0

⌈
2Dw[ℓ]

ϵ

⌉
.

Proof of Lemma III.5. Let M :=
∏T

ℓ=0

⌈
2Dw[ℓ]

ϵ

⌉
and take {x1, . . . , xM} to be an ϵ-packing for (S−, ∥·∥w)

according to Lemma C.1. Hence, with δ := minℓ̸=j∥xℓ − xj∥w > ϵ, there exists an ϵ′ ∈ (ϵ, δ). Next,
define balls of radius ϵ′/2 centered at the packing points {x1, . . . , xM} according to Sℓ := {x[·] ∈ S− |
∥x − xℓ∥w ≤ ϵ′/2}, for ℓ ∈ {1, . . . ,M}. We now show that these balls are non-overlapping. Indeed,
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assuming that, for j ̸= ℓ, there exists an x ∈ S− with ∥x− xj∥w < ϵ′/2 and ∥x− xℓ∥w < ϵ′/2, leads to
the contradiction

ϵ′ < δ ≤ ∥xℓ − xj∥w = ∥xℓ − x+ x− xj∥w ≤ ∥xℓ − x∥w + ∥x− xj∥w ≤ ϵ′/2 + ϵ′/2.

As the balls Sℓ, ℓ ∈ {1, . . . ,M}, are non-overlapping, the signal x[·] = 0 is contained in at most one
ball Sℓ which we take to be SM w.l.o.g.. Now, we define the set U , with elements indexed by bitstring
subscripts, according to

U :=
{
gα1,...,αM−1

(·) | αℓ ∈ {0, 1}, for ℓ ∈ {1, . . . ,M − 1}
}
, where

gα1,...,αM−1
(x) =

(2αℓ − 1)(ϵ′/2− ∥x− xℓ∥w), for x ∈ Sℓ, ℓ ∈ {1, . . . ,M − 1}

0, else,

and show that U constitutes an ϵ-packing for (G0(w), ρ0). First, we establish that U ⊂ G0(w) by verifying
that every gα1,...,αM−1

(·) ∈ U satisfies the conditions in (11). Indeed, gα1,...,αM−1
(0) = 0 because the zero

signal is either in no ball or in SM . Next, we show that |gα1,...,αM−1
(x) − gα1,...,αM−1

(x′)| ≤ ∥x −
x′∥w, ∀x, x′ ∈ S−. This will be done by distinguishing cases. First, assume that x and x′ are contained
in the same ball Sℓ, for some ℓ ∈ {1, . . . ,M − 1}. Then, we have

|gα1,...,αM−1
(x)− gα1,...,αM−1

(x′)| = |2αℓ − 1| · |∥x′ − xℓ∥w − ∥x− xℓ∥w|

≤ ∥(x′ − xℓ)− (x− xℓ)∥w = ∥x′ − x∥w,
(144)

where we used the reverse triangle inequality. Next, assume that x ∈ Sℓ and x′ ∈ Sj , with ℓ, j ∈
{1, . . . ,M − 1} and ℓ ̸= j. We define z(µ) := x + µ(x′ − x), µ ∈ [0, 1]. Since z(0) = x ∈ Sℓ

and z(1) = x′ /∈ Sℓ (because the balls are non-overlapping), there must be a µ1 ∈ (0, 1) such that
∥z(µ1) − xℓ∥w = ϵ′/2. As z(µ1) /∈ Sj and z(1) = x′ ∈ Sj , there must similarly be a µ2 ∈ (µ1, 1)

such that ∥z(µ2) − xj∥w = ϵ′/2. For notational simplicity, we set z1 := z(µ1), z2 := z(µ2), and
g := gα1,...,αM−1

. Next, we bound

|g(x)− g(x′)| ≤ |g(x)− g(z1)|+ |g(z1)− g(z2)|+ |g(z2)− g(x′)|

≤ |g(x)− g(z1)|+ 0 + |g(z2)− g(x′)| (145)

≤ ∥x− z1∥w + ∥z2 − x′∥w (146)

= ∥µ1(x− x′)∥w + ∥(1− µ2)(x− x′)∥w (147)

= (1 + µ1 − µ2)∥x− x′∥w < ∥x− x′∥w, (148)

where in (145) we used that g(z1) = g(z2) = 0, in (146) we applied (144) upon noting that x, z1 and
z2, x

′ are contained in the same ball each, in (147) we inserted the definition of z1 and z2, and in (148)
we used µ2 > µ1. Finally, assume that x ∈ Sℓ, for some ℓ ∈ {1, . . . ,M − 1}, and x′ /∈ Sj , for all
j ∈ {1, . . . ,M − 1}. We let z(µ) := x+ µ(x′− x), µ ∈ [0, 1]. Since z(0) = x ∈ Sℓ and z(1) = x′ /∈ Sℓ,
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there must be a µ1 ∈ (0, 1) such that ∥z(µ1)− xℓ∥w = ϵ′/2. Again, we set z1 = z(µ1) and bound

|g(x)− g(x′)| ≤ |g(x)− g(z1)|+ |g(z1)− g(x′)|

≤ |g(x)− g(z1)|+ 0 (149)

≤ ∥x− z1∥w = ∥µ1(x− x′)∥w (150)

= µ1∥x− x′∥w < ∥x− x′∥w, (151)

where in (149) we used that g(z1) = g(x′) = 0, in (150) we applied (144) upon noting that x, z1 are
contained in the same ball, and in (151) we used µ1 < 1. We have thus established that |gα1,...,αM−1

(x)−
gα1,...,αM−1

(x′)| ≤ ∥x− x′∥w, ∀x, x′ ∈ S−, and hence U ⊂ G0(w).

Next, we show that for distinct gα1,...,αM−1
, gβ1,...,βM−1

∈ U , i.e., there is at least one ℓ ∈ {1, . . . ,M−1}
such that αℓ ̸= βℓ, it holds that ρ0(gα1,...,αM−1

, gβ1,...,βM−1
) > ϵ. Indeed, for any such ℓ, we have

ρ0(gα1,...,αM−1
, gβ1,...,βM−1

) = sup
x̃∈S−

|gα1,...,αM−1
(x̃)− gβ1,...,βM−1

(x̃)| (152)

≥ |gα1,...,αM−1
(xℓ)− gβ1,...,βM−1

(xℓ)| (153)

= |2(αℓ − βℓ)ϵ
′/2| = ϵ′ > ϵ,

where in (152) we used (13) and in (153) we inserted the particular choice x̃ = xℓ to lower-bound the
sup. This establishes that U , indeed, constitutes an ϵ-packing for (G0(w), ρ0) and we therefore have

logM(ϵ;G0(w), ρ0) ≥ log |U| = M − 1 =

(
T∏

ℓ=0

⌈
2Dw[ℓ]

ϵ

⌉)
− 1.

E. Proof of Lemma IV.2

Note that w(e)
a,b[t] > ϵ/d gives t <

log( ad

ϵ )
b log(e) , and thereby

T = max

{
t ∈ N

∣∣∣∣∣ t < log
(
ad
ϵ

)
b log(e)

}
=

⌈
log
(
ad
ϵ

)
b log(e)

⌉
− 1. (154)

Now, we note that

log

 T∏
ℓ=0

cw
(e)
a,b[ℓ]

ϵ

 = log

(
T∏

ℓ=0

ace−bℓ

ϵ

)

= (T + 1) log(ϵ−1)− b log(e)
T (T + 1)

2
+ (T + 1) log(ac)

=

⌈
log
(
ad
ϵ

)
b log(e)

⌉
log(ϵ−1)− b log(e)

⌈
log( ad

ϵ )
b log(e)

⌉(⌈
log( ad

ϵ )
b log(e)

⌉
− 1

)
2

+

⌈
log
(
ad
ϵ

)
b log(e)

⌉
log(ac). (155)
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Next, assuming that ϵ is sufficiently small to guarantee that
log( ad

ϵ )
b log(e) − 1 ≥ 0, we can upper-bound (155)

according to

log

 T∏
ℓ=0

cw
(e)
a,b[ℓ]

ϵ

 (156)

≤

(
log
(
ad
ϵ

)
b log(e)

+ 1

)
log(ϵ−1)− b log(e)

log( ad

ϵ )
b log(e)

(
log( ad

ϵ )
b log(e) − 1

)
2

+

(
log
(
ad
ϵ

)
b log(e)

+ 1

)
log(ac)

=
1

2b log(e)
log2(ϵ−1) +

(
log(ad)

b log(e)
+ 1− 1

2b log(e)
(2 log(ad)− b log(e)) +

log(ac)

b log(e)

)
log(ϵ−1)

− log(ad) (log(ad)− b log(e))

2b log(e)
+ log(ac)

(
log(ad)

b log(e)
+ 1

)
=

1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
. (157)

In the same spirit, we can lower-bound (155) as

log

 T∏
ℓ=0

cw
(e)
a,b[ℓ]

ϵ

 (158)

≥

(
log
(
ad
ϵ

)
b log(e)

)
log(ϵ−1)− b log(e)

log( ad

ϵ )
b log(e)

(
log( ad

ϵ )
b log(e) + 1

)
2

+

(
log
(
ad
ϵ

)
b log(e)

)
log(ac)

=
1

2b log(e)
log2(ϵ−1) +

(
log(ad)

b log(e)
− 1

2b log(e)
(2 log(ad) + b log(e)) +

log(ac)

b log(e)

)
log(ϵ−1)

− log(ad) (log(ad) + b log(e))

2b log(e)
+ log(ac)

(
log(ad)

b log(e)

)
=

1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
. (159)

Finally, combining (157) and (159) yields

log

 T∏
ℓ=0

cw
(e)
a,b[ℓ]

ϵ

 =
1

2b log(e)
log2(ϵ−1) + o

(
log2(ϵ−1)

)
,

as desired.

F. Proof of Lemma IV.5

We start by noting that

T = max
{
t ∈ N

∣∣∣ w(p)
p,q >

ϵ

d

}
=

⌈(
dq

ϵ

)1/p
⌉
− 2. (160)
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Next,

log

(
T∏

ℓ=0

cw
(p)
p,q [ℓ]

ϵ

)
= (T + 1) log c+ (T + 1) log(ϵ−1) +

T∑
ℓ=0

log
(
w(p)
p,q [ℓ]

)
= (T + 1) log(cq) + (T + 1) log(ϵ−1)− p log((T + 1)!)

= (T + 1) log(cq) + (T + 1) log(ϵ−1)− p ((T + 1) log(T + 1)− (T + 1) log(e))

+O(log(T + 1)) (161)

= (T + 1) log(cqep) + (T + 1)

(
log(ϵ−1)− p log

(⌈(
dq

ϵ

)1/p
⌉
− 1

))
+O(log(ϵ−1)), (162)

where (161) follows from the logarithm form of Stirling’s approximation, namely

log(n!) = n log(n)− n log(e) +O(log(n)). (163)

Now, assuming that ϵ is sufficiently small to guarantee that 1 ≤ 1
2(dq/ϵ)

1/p, applying
log
(
(dq/ϵ)1/p − 1

)
≥ log

(
(12(dq/ϵ)

1/p
)
) ≥ 0, we can upper-bound (162) as

(T + 1) log(cqep) + (T + 1)

(
log(ϵ−1)− p log

((
dq

ϵ

)1/p

− 1

))
+O(log(ϵ−1))

≤ (T + 1) log(cqep) + (T + 1)

(
log(ϵ−1)− p log

(
1

2

(
dq

ϵ

)1/p
))

+O(log(ϵ−1))

= (T + 1)(log(cep/d) + p) +O(log(ϵ−1))

=

(⌈(
dq

ϵ

)1/p
⌉
− 1

)
(log(cep/d) + p) +O(log(ϵ−1))

≤
(
dq

ϵ

)1/p

(log(cep/d) + p) +O(log(ϵ−1)). (164)

Furthermore, we can lower-bound (162) according to

(T + 1) log(cqep) + (T + 1)

(
log(ϵ−1)− p log

((
dq

ϵ

)1/p
))

+O(log(ϵ−1))

= (T + 1) log(cep/d) +O(log(ϵ−1))

=

(⌈(
dq

ϵ

)1/p
⌉
− 1

)
log(cep/d) +O(log(ϵ−1))

≥

((
dq

ϵ

)1/p

− 1

)
log(cep/d) +O(log(ϵ−1))

=

(
dq

ϵ

)1/p

log(cep/d) +O(log(ϵ−1)). (165)
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Combining (162), (164), and (165) yields the desired result

log

(
T∏

ℓ=0

cw
(p)
p,q [ℓ]

ϵ

)
= Θ(ϵ−1/p).

G. Proof of Lemma IV.6

Consider ϵ ∈ (0, ϵ0) with ϵ0 =
Dw(p)

p,q[0]

2 = aD
2 . By Theorem III.11, the exterior covering number of

(G(w(p)
p,q), ρ) satisfies(

T ′∏
ℓ=0

⌈
Dw

(p)
p,q [ℓ]

ϵ

⌉)
− 1 ≤ logN ext(ϵ;G(w(p)

p,q), ρ∗) ≤ log (3)

T ′′∏
ℓ=0

(
2

⌈
4Dw

(p)
p,q [ℓ]

ϵ

⌉
+ 1

)
, (166)

where
T ′ := max

{
ℓ ∈ N

∣∣∣ w(p)
p,q [ℓ] >

ϵ

D

}
and T ′′ := max

{
ℓ ∈ N

∣∣∣ w(p)
p,q [ℓ] >

ϵ

4D

}
.

We can further lower-bound the left-most term in (166) according to(
T ′∏
ℓ=0

⌈
Dw

(p)
p,q [ℓ]

ϵ

⌉)
− 1 ≥

(
T ′∏
ℓ=0

Dw
(p)
p,q [ℓ]

ϵ

)
− 1

≥ 1

2

T ′∏
ℓ=0

Dw
(p)
p,q [ℓ]

ϵ
, (167)

where (167) follows from
1

2

T ′∏
ℓ=0

Dw
(p)
p,q [ℓ]

ϵ
≥ 1,

which, in turn, is a consequence of

Dw
(p)
p,q [0]

ϵ
≥ Dw

(p)
p,q [0]

ϵ0
= 2,

Dw
(p)
p,q [ℓ]

ϵ
≥ Dw

(p)
p,q [T ′]

ϵ
> 1, for ℓ ∈

q
T ′

y
\ {0}.

Similarly, we can further upper-bound the right-most term in (166) as

log(3)

(
T ′′∏
ℓ=0

(
2

⌈
4Dw

(p)
p,q [ℓ]

ϵ

⌉
+ 1

))
≤ log(3)

(
T ′′∏
ℓ=0

(
8Dw

(p)
p,q [ℓ]

ϵ
+ 3

))

≤ log(3)

(
T ′′∏
ℓ=0

20Dw
(p)
p,q [ℓ]

ϵ

)
, (168)

where (168) follows from

4Dw
(p)
p,q [ℓ]

ϵ
≥ 4Dw

(p)
p,q [T ′′]

ϵ
> 1, for ℓ ∈

q
T ′′

y
.
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Combining (166)–(168), taking logarithms two more times, dividing the results by log(ϵ−1), and applying
Lemma IV.5, we obtain

log
(
Θ(ϵ−1/p)

)
log(ϵ−1)

≤ log(3)N ext(ϵ;G(w(p)
p,q), ρ∗)

log(ϵ−1)
≤

log
(
Θ(ϵ−1/p)

)
log(ϵ−1)

. (169)

Taking the limit ϵ → 0, we finally get

lim
ϵ→0

log(3)N ext(ϵ;G(w(p)
p,q), ρ∗)

log(ϵ−1)
=

1

p
,

which implies that (G(w(p)
p,q), ρ∗) is of order 2 and type 1, with generalized dimension

d =
1

p
.

H. Auxiliary results on ReLU networks

Lemma C.2. For d ∈ N, consider the following functions,

fmin
d (z) := min{z1, z2, . . . , zd}, for z ∈ Rd,

fmax
d (z) := max{z1, z2, . . . , zd}, for z ∈ Rd.

Then, there exist ReLU networks Φmin
d ∈ Nd,1 and Φmax

d ∈ Nd,1, with L(Φmin
d ) = L(Φmax

d ) =

⌈log(d+ 1)⌉+ 1, M(Φmin
d ) = M(Φmax

d ) ≤ 14d− 9, W(Φmin
d ) = W(Φmax

d ) ≤ 3d, K(Φmin
d ) = K(Φmax

d ) =

{1,−1}, B(Φmin
d ) = B(Φmax

d ) = 1, such that

Φmin
d (z) = fmin

d (z), for all z ∈ Rd,

Φmax
d (z) = fmax

d (z), for all z ∈ Rd.

Proof. We only need to show the result for the max function as min{z1, z2, . . . , zd} =

−max{−z1,−z2, . . . ,−zd}. First, we realize max{x1, x2} according to

max{x1, x2} = x1 + ρ(x2 − x1) (170)

by the ReLU network
Φ̂ = Ŵ2 ◦ ρ ◦ Ŵ1, (171)

with

Ŵ1(x) =

 1 0

−1 0

−1 1

x =: A1x,

Ŵ2(x) =
(
1 −1 1

)
x =: A2x.

(172)

Now, for arbitrary d ∈ N, choose ℓ ∈ N such that 2ℓ ≤ d < 2ℓ+1. Then, we double the first k = 2ℓ+1−d
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elements and retain the remaining d− k elements as follows

max{x1, . . . , xd} = max{x1, x1, . . . , xk, xk, xk+1, xk+2, . . . , xd}. (173)

The primary reason for doubling elements is that by extending the set {x1, . . . , xd} to a set whose
cardinality is a power of 2, we can utilize (170) together with a divide-and-conquer approach to determine
the maximum value of the set {x1, . . . , xd}. This then leads to a ReLU network realization of depth
scaling logarithmically in d. Now, set Wℓ+1(x) := A2x, Wj(x) := Bjx, for j ∈ {ℓ, ℓ − 1, . . . , 1}, and
W0(x) := A0x, with

Bo = A1 diag (A2, A2) ,

Bj = diag(Bo, . . . , Bo︸ ︷︷ ︸
2ℓ−j

)x,

=

 1 −1 1 0 0 0

−1 1 −1 0 0 0

−1 1 −1 1 −1 1

 ,

A0 = diag(A1, . . . , A1︸ ︷︷ ︸
2ℓ

) diag(12, . . . ,12︸ ︷︷ ︸
k

, Id−k)

= diag(A112, . . . , A112︸ ︷︷ ︸
k

, A1, . . . , A1︸ ︷︷ ︸
2ℓ−k

),

A112 = (1,−1, 0)T .

(174)

Combining (170)-(174), we will now be able to establish

Φmax
d := Wℓ+1 ◦ ρ ◦Wℓ ◦ ρ ◦ . . . ρ ◦W1 ◦ ρ ◦W0 = fmax

d . (175)

The proof of (175) is summarized as follows:

(i) We double the first k = 2ℓ+1−d elements and retain the remaining d−k elements of {x1, x2, . . . , xd}
according to (

x1 x1 . . . xk xk xk+1 xk+2 . . . xd

)T
= diag(12, . . . ,12︸ ︷︷ ︸

k

, Id−k)
(
x1 x2 . . . xd

)T
.

For simplicity, we denote the resulting set {x1, x1, . . . , xk, xk, xk+1, xk+2, . . . , xd} as
{y1, y2, . . . , y2ℓ+1}.

(ii) Application of (171) to the 2ℓ pairs in {y1, y2, . . . , y2ℓ+1}, results in
{max{y1, y2},max{y3, y4}, . . . ,max{y2ℓ+1−1, y2ℓ+1}} and hence reduces the number of elements
from 2ℓ+1 to 2ℓ. This reduction is applied iteratively until we get max{x1, x2, . . . , xd}. The
compositions A1 ◦ diag (A2, A2), formed in the iterative application of (171), constitute the main
diagonal elements of the matrices Bk, k ∈ {ℓ, ℓ − 1, . . . , 1}. We will illustrate this part of the
procedure using the simplest possible example, namely for ℓ = 1 and hence max{y1, y2, y3, y4}.
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Specifically, we have

max{y1, y2, y3, y4} = max{max{y1, y2},max{y3, y4}}

= max
{
diag (A2, A2) ρ

(
diag (A1, A1) ((y1, y2), (y3, y4))

T
)}

= A2ρ
(
A1 diag (A2, A2) ρ

(
diag (A1, A1) ((y1, y2), (y3, y4))

T
))

= (W2 ◦ ρ ◦W1 ◦ ρ ◦W0)(y).

Finally, we can determine the size of the resulting network (175) as follows

L(Φmax
d )

(175)
= ℓ+ 1 = ⌈log(d+ 1)⌉+ 1,

M(Φmax
d )

(175)
=

ℓ+1∑
j=0

M(Wj) = M(A2) +

ℓ∑
j=1

M(Bj) +M(A0)

(174), (172)
= 3 + 2k + 4(2ℓ − k) + 12

ℓ∑
j=1

2ℓ−j ≤ 14d− 9,

W(Φmax
d )

(175)
= max

j=0,1...,ℓ+1
W(Wj)

(174), (172)
= 3 · 2ℓ ≤ 3d,

K(Φmax
d )

(175)
⊂

ℓ+1⋃
j=0

K(Wj)
(174), (172)

= {1,−1},

B(Φmax
d ) = max

b∈K(Φmax
d )

|b| = 1.

Lemma C.3 (Composition of ReLU networks [7]). For i = 1, . . . , n, let di ∈ N and Φi ∈ Ndi,di+1
.

Then, there exists a network Ψ ∈ Nd1,dn+1
with

Ψ(x) = (Φn ◦ Φn−1 ◦ · · · ◦ Φ1)(x), for all x ∈ Rd1 , (176)

satisfying

L(Ψ) =

n∑
i=1

L(Φi),

M(Ψ) ≤ 2

n∑
i=1

M(Φi),

W(Ψ) ≤ max

{
max

i=1,...,n−1
{2di}, max

i=1,...,n
{W(Φi)}

}
,

K(Ψ) ⊂
n⋃

i=1

(K(Φi) ∪ (−K(Φi)),

B(Ψ) = max
i=1,...,n

B(Φi).

(177)

Proof. Follows along the same lines as the proof of [7, Lemma 2.3].

Lemma C.4 (Parallelization of ReLU networks of the same depth [7]). For i = 1, . . . , n, let di, d′i ∈ N
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and Φi ∈ Ndi,d′
i

with L(Φi) = L. Then, there exists a ReLU network P (Φ1,Φ2, . . . ,Φn) ∈
N∑n

i=1 di,
∑n

i=1 d
′
i

with

P (Φ1,Φ2, . . . ,Φn)(x) = (Φ1(x),Φ2(x), . . . ,Φn(x))
T , for all x ∈ R

∑n
i=1 di , (178)

satisfying
L(P (Φ1,Φ2, . . . ,Φn)) = L,

M(P (Φ1,Φ2, . . . ,Φn)) =

n∑
i=1

M(Φi),

W(P (Φ1,Φ2, . . . ,Φn)) ≤
n∑

i=1

W(Φi),

K(P (Φ1,Φ2, . . . ,Φn)) =

n⋃
i=1

K(Φi),

B(P (Φ1,Φ2, . . . ,Φn)) = max
i=1,...,n

B(Φi).

(179)

Proof. Follows along similar lines as the proof of [7, Lemma 2.5].

Lemma C.5 (Augmenting network depth [7]). Let d1, d2,K ∈ N, and Φ ∈ Nd1,d2
with L(Φ) < K.

Then, there exists a network Ψ ∈ Nd1,d2
with

L(Ψ) = K,

M(Ψ) ≤ M(Φ) + d2W(Φ) + 2d2(K − L(Φ)),

W(Ψ) = max{2d2,W(Φ)},

K(Ψ) ⊂ (K(Φ)) ∪ (−K(Φ)) ∪ {1,−1},

B(Ψ) = max{1,B(Φ)},

(180)

satisfying Ψ(x) = Φ(x), for all x ∈ Rd1 .

Proof. Follows along the same lines as the proof of [7, Lemma 2.4].

I. Remainder of the proof of Lemma V.2

We verify that Φ = Φ2 ◦ Φ1 defined in (77) has (2, ϵ)-quantized weights.

• The weights in Φ2 = W̃Σ defined in (74):

g̃n
(63)
= Q2,ϵ(g(x̃n))

Definition II.2
=

⌈
g(x̃n)/2

−2⌈log(ϵ−1)⌉
⌉
· 2−2⌈log(ϵ−1)⌉ ∈ 2−2⌈log(ϵ

−1)⌉Z,

|g̃n| ≤ |g(x̃n)|+ 2−2⌈log(ϵ
−1)⌉ (11)

≤ D + 2−2⌈log(ϵ
−1)⌉ (189)

≤ D + ϵ2 ≤ D + 1
(189)
≤ ϵ−2,

which yields
K(Φ2) ⊂ 2−2⌈log(ϵ

−1)⌉Z ∩
[
−ϵ−2, ϵ−2

]
. (181)
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• The weights in Φ1 defined in (76):

K(Φ1) =
⋃
n∈Ñ

(
K(Φn

1,2) ∪ K(Φn
1,1)
)
= K(Ψ) ∪

⋃
n∈Ñ

K(Ŵn)

 . (182)

Recalling that Ψ realizes the spike function and applying Lemma V.1, we obtain

K(Ψ) = {1,−1} ⊂ 2−2⌈log(ϵ
−1)⌉Z ∩

[
−ϵ−2, ϵ−2

]
. (183)

Based on (74), we get ⋃
n∈Ñ

K(Ŵn) =

T⋃
ℓ=0

⋃
n∈Ñ

{δ̃−1ℓ , nℓ}

 . (184)

Moreover, for all ℓ = 0, . . . , T and n ∈ Ñ, we have

δ̃−1ℓ

(61)
= Q2,ϵ(δ

−1
ℓ )

Definition II.2
=

⌈
s+ 1

s

w[ℓ]

ϵ

/
2−2⌈log(ϵ

−1)⌉
⌉
· 2−2⌈log(ϵ−1)⌉ ∈ 2−2⌈log(ϵ

−1)⌉Z,∣∣∣δ̃−1ℓ

∣∣∣ ≤ s+ 1

s

w[ℓ]

ϵ
+ 2−2⌈log(ϵ

−1)⌉ Definition II.18
≤ s+ 1

s
ϵ−1 + ϵ2

(189)
≤ ϵ−2.

Hence,
δ̃−1ℓ ∈ 2−2⌈log(ϵ

−1)⌉Z ∩
[
−ϵ−2, ϵ−2

]
, (185)

and

nℓ ∈ Z ⊂ 2−2⌈log(ϵ
−1)⌉Z,

|nℓ| ≤ Ñℓ
(62)
=

⌈
D

δ̃ℓ

⌉
≤ D

∣∣∣δ̃−1ℓ

∣∣∣+ 1

≤ D

(
s+ 1

s
ϵ−1 + ϵ2

)
+ 1

(189)
≤
(
D
s+ 1

s
+D + 1

)
ϵ−1

(189)
≤ ϵ−2,

which yields
nℓ ∈ 2−2⌈log(ϵ

−1)⌉Z ∩
[
−ϵ−2, ϵ−2

]
. (186)

Based on (184), (185), and (186), we have⋃
n∈Ñ

K(Ŵn) ⊂ 2−2⌈log(ϵ
−1)⌉Z ∩

[
−ϵ−2, ϵ−2

]
. (187)

Combining (182), (183), (184), and (187) yields

K(Φ1) ⊂ 2−2⌈log(ϵ
−1)⌉Z ∩

[
−ϵ−2, ϵ−2

]
. (188)

Using (181) and (188), Lemma C.3 shows that Φ = Φ2 ◦ Φ1, indeed, has (2, ϵ)-quantized weights.
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Finally, we compute L(Φ) and derive an upper bound on M(Φ) according to

L(Φ) (77),LemmaC.3
= L(Φ2) + L(Φ1)

(76),(75),LemmaC.4
= L(Ψ) + 2

LemmaV.1
= ⌈log(d+ 1)⌉+ 6,

M(Φ)
Lemma C.3

≤ 2 (M(Φ2) +M(Φ1))

Lemma C.4
= 2

M(Φ2) +

|Ñ|∑
i=1

(
2M(Ψ) + 2M(Ŵni)

)
(74)-(77), Lemma V.1

≤ 2|Ñ| (1 + 120(T + 1)− 56 + 2(T + 1))

≤ 244(T + 1)|Ñ|

(62)
≤ 244(T + 1)

T∏
ℓ=0

(
2Dδ̃−1ℓ + 3

)
(59),(61),(62)

≤ 244(T + 1)

T∏
ℓ=0

(
2D

(
s+ 1

s

w[ℓ]

ϵ
+ ϵ2

)
+ 3

)
(189)
≤ 244(T + 1)

T∏
ℓ=0

(
2Dw[ℓ]

ϵ

s+ 1

s
+ 4

)
.

The proof is concluded by setting

ϵ0 = min

{
1,

1

2
,

1

s+ 1
,

√
1

D + 1
,

(
D
s+ 1

s
+D + 1

)−1}
. (189)
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