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We propose a theory for matrix completion that goes beyond the low-rank structure

commonly considered in the literature and applies to general matrices of low description

complexity. Specifically, complexity of the sets of matrices encompassed by the theory is

measured in terms of Hausdorff and upper Minkowski dimensions. Our goal is the character-

ization of the number of linear measurements, with an emphasis on rank-1 measurements,

needed for the existence of an algorithm that yields reconstruction, either perfect, with

probability 1, or with arbitrarily small probability of error, depending on the setup. Con-

cretely, we show that matrices taken from a set U such that U −U has Hausdorff dimension

s can be recovered from k > s measurements, and random matrices supported on a set U of
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Hausdorff dimension s can be recovered with probability 1 from k > s measurements. What

is more, we establish the existence of recovery mappings that are robust against additive

perturbations or noise in the measurements. Concretely, we show that there are β-Hölder

continuous mappings recovering matrices taken from a set of upper Minkowski dimension s

from k > 2s/(1− β) measurements and, with arbitrarily small probability of error, random

matrices supported on a set of upper Minkowski dimension s from k > s/(1 − β) mea-

surements. The numerous concrete examples we consider include low-rank matrices, sparse

matrices, QR decompositions with sparse R-components, and matrices of fractal nature.

1 Introduction

Matrix completion refers to the recovery of a low-rank matrix from a (small) subset of its

entries or a (small) number of linear combinations thereof. This problem arises in a wide

range of applications including quantum state tomography, face recognition, recommender

systems, and sensor localization (see, e.g., [1, 2] and references therein).

The formal problem statement is as follows. Suppose we have k linear measurements of

the matrix X ∈ Rm×n with rank(X) ≤ r in the form of

y = (⟨A1,X⟩ . . . ⟨Ak,X⟩)T, (1)

where ⟨Ai,X⟩ = tr(AT
i X) is the standard trace inner product between matrices; the

Ai ∈ Rm×n are referred to as measurement matrices. The number of measurements, k, is

typically much smaller than the total number of entries,mn, of X. Depending on the Ai, the

measurements can simply be individual entries of X or general linear combinations thereof.

Can we recover X from y?

The vast literature on matrix completion (for a highly incomplete list see [1–14]) provides

thresholds on the number of measurements needed for successful recovery of the unknown

low-rank matrix X, under various assumptions on the measurement matrices Ai and the

low-rank models generating X. For instance, in [3] the Ai are chosen randomly from a

fixed orthonormal (w.r.t. the trace inner product) basis for Rn×n and it is shown that an
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unknown n× n matrix X of rank no more than r can be recovered with high probability if

k ≥ O(nrν ln2 n). Here, ν denotes the coherence [3, Def. 1] between the unknown matrix X

and the orthonormal basis the Ai are drawn from.

The setting in [4] assumes random1 measurement matrices Ai with the position of the

only nonzero entry, which is equal to one, chosen uniformly at random. It is shown that

almost all (a.a.) matrices X (where a.a. is with respect to the random orthogonal model [4,

Def. 2.1]) of rank no more than r can be recovered with high probability (with respect to the

measurement matrices) provided that the number of measurements satisfies k ≥ Cn1.25r lnn,

where C is a constant.

In [1] it is shown that for random measurement matrices Ai satisfying a certain concen-

tration property, matrices X of rank no more than r can be recovered with high probability

from k ≥ C(m+ n)r measurements, where C is a constant.

The results on recovery thresholds reviewed so far as well as those in [5, 6, 10–12] all

pertain to recovery through nuclear norm minimization.

In [15] measurement matrices Ai containing i.i.d. entries drawn from an absolutely con-

tinuous (with respect to Lebesgue measure) distribution are considered. It is shown that

rank minimization (which is NP-hard, in general) recovers n×n matrices X of rank no more

than r with probability 1 if k > (2n − r)r. Furthermore, it is established that all matrices

X of rank no more than n/2 can be recovered, again through rank minimization and with

probability 1, provided that k ≥ 4nr − 4r2.

The recovery thresholds in [15],[1] do not exhibit a (log n)-factor, but assume significant

richness in the random measurement matrices Ai. Storing and applying the realizations of

such measurement matrices is costly in terms of memory and computation time, respectively.

To alleviate this problem, [12] considers rank-1 measurement matrices of the form Ai = aib
T
i ,

where the random vectors ai ∈ Rm and bi ∈ Rn are independent with i.i.d. Gaussian or

sub-Gaussian entries; it is shown that nuclear norm minimization succeeds under the same

recovery threshold as in [1], namely k ≥ C(m+ n)r for some constant C.

The recovery of matrices that, along with the measurement matrices, belong to algebraic

varieties was studied in [16–18]. As a byproduct, it is shown that almost all rank-r matrices

1We indicate random quantities by roman sans-serif letters such as A.
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in Rm×n can be recovered from k > (m + n − r)r measurements taken with measurement

matrices of arbitrary rank.

Finally, the application of recent results on analog signal compression [19–22] to matrix

completion yields recovery thresholds for a.a. measurement matricesAi and random matrices

X that have low description complexity in the sense of [21]. Specifically, the results in [21]

can be transferred to matrix completion by writing the trace inner product ⟨Ai,X⟩ as the

standard inner product between the vectorized matrices Ai and X (obtained by stacking the

columns). The definition of “low description complexity” as put forward in [21] goes beyond

the usual assumption of X having low rank. It essentially says that the matrix takes value in

some low-dimensional2 set U ⊆ Rm×n with probability 1. This set U can, for example, be the

set of all matrices with rank no more than r, but much more general structures are possible.

Contributions. The purpose of this paper is to establish fundamental recovery thresholds

(i.e., thresholds not restricted to a certain recovery scheme) for rank-1 measurement matrices

Ai = aib
T
i applied to data matrices X taking value in low-dimensional sets U ⊆ Rm×n.

Rank-1 measurement matrices are practically relevant due to reduced storage requirements

and lower computational complexity in the evaluation of the trace inner product ⟨aib
T
i ,X⟩ =

aT
i Xbi. We consider both deterministic data matricesX with associated recovery guarantees

for all X ∈ U and random X accompanied by recovery guarantees either with probability

1 or with arbitrarily small probability of error. The recovery thresholds we obtain are in

terms of the Hausdorff dimension of the support set U of the data matrices. Furthermore,

we establish bounds–in terms of the upper Minkowski dimension of U–on the number of

measurements needed to guarantee Hölder continuous recovery, and hence robustness against

additive perturbations or noise. Hausdorff and upper Minkowski dimension are particularly

easy to characterize for countably rectifiable and rectifiable sets [23], respectively. These

concepts comprise most practically relevant data structures such as low rank and sparsity

in terms of the number of nonzero entries as well as the Kronecker product, matrix product,

or sum of any such matrices. As an example of sets that do not fall into the rich class of

2The precise dimension measures used in the definition of low description complexity in [19–22] are, depending
on the context, lower modified Minkowski dimension, upper Minkowski dimension, or Hausdorff dimension.
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rectifiable sets, but our theory still applies to, we consider sets of fractal nature. Specifically,

we investigate attractor sets of recurrent iterated function systems [24].

Recovery thresholds for general (as opposed to rank-1) measurement matrices follow

in a relatively straightforward manner through vectorization from the theory of lossless

analog compression as developed in [21]. For the reader’s convenience, we shall describe these

extensions in brief wherever appropriate. We finally note that a preliminary version of part

of the work reported in the present paper, specifically weaker results for more restrictive sets

U of bounded Minkowski dimension and without statements on Hölder-continuous recovery,

was presented in [25] by a subset of the authors.

Organization of the paper. In Section 2, we present recovery thresholds for matrices X

taking value in a general set U ⊆ Rm×n. These results are formulated in terms of Hausdorff

and upper Minkowski dimension of U . In Section 3, we introduce the concept of rectifi-

able and countably rectifiable sets from geometric measure theory [23] and we characterize

the upper Minkowski and Hausdorff dimensions of such sets. Furthermore, it is shown that

many practically relevant sets of structured matrices are (countably) rectifiable. The partic-

ularization of our general recovery thresholds to the rectifiable case concludes this section.

In Section 4, we particularize our general recovery thresholds to attractor sets of recur-

rent iterated function systems. The proofs of our main results, Theorems 2.1 and 2.2 and

Propositions 2.1 and 2.2 are contained in Sections 5–8.

Notation. Capitalized boldface letters A,B, . . . designate deterministic matrices and

lowercase boldface letters a, b, . . . stand for deterministic vectors. We use roman sans-serif

letters for random quantities (e.g., x for a random vector and A for a random matrix).

Random quantities are assumed to be defined on the Borel σ-algebra of the underlying space.

P[X ∈ U ] denotes the probability of X being in the Borel set U . We write λ for Lebesgue

measure. The superscript T stands for transposition. The ordered singular values of a matrix

A are denoted by σ1(A) ≥ · · · ≥ σn(A). We write A⊗B for the Kronecker product of the

matrices A and B, denote the trace of A by tr(A), and let ⟨A,B⟩ = tr(ATB) be the trace

inner product of A and B. Further, ∥A∥2 =
√

⟨A,A⟩ and ∥A∥0 refers to the number of

nonzero entries of A. For the Euclidean space (Rk, ∥ · ∥2), we denote the open ball of radius

s centered at u ∈ Rk by Bk(u, s), V (k, s) stands for its volume. Similarly, for the Euclidean
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space (Rm×n, ∥ · ∥2), the open ball of radius s centered at U ∈ Rm×n is Bm×n(U , s). We

set Mm×n
r = {X ∈ Rm×n : rank(X) ≤ r} and let Am×n

s = {X ∈ Rm×n : ∥X∥0 ≤ s}.

The closure of the set U is denoted by U . The Cartesian product of the sets A and B in

Euclidean space is written as A×B and their Minkowski difference is designated by A−B.

The indicator function of a set U is designated by χU . For a bounded set U ⊆ Rm×n and

δ > 0, we denote the covering number of U by

Nδ(U) = min

{
N ∈ N : ∃Y 1, . . . ,Y N ∈ U s.t. U ⊆

N⋃
i=1

Bm×n(Y i, δ)

}
. (2)

For U ,V ⊆ Rm×n, we set U − V = {U − V : U ∈ U ,V ∈ V}. We let dimH(·) denote the

Hausdorff dimension [26, Equation (3.10)], defined by

dimH(U) = inf{s ≥ 0 : H s(U) = 0}, (3)

where H s(U) = limδ→0 inf
{∑∞

i=1 diam
s(Ui) : {Ui} is a δ-cover of U

}
is the s-dimensional

Hausdorff measure of U [26, Equation (3.2)].

Furthermore, dimB(·) and dimB(·) refer to the upper and lower Minkowski dimension

[26, Definition 2.1] defined as

dimB(U) = lim supδ→0

logNδ(U)
log(1/δ)

(4)

and

dimB(U) = lim infδ→0
logNδ(U)
log(1/δ)

, (5)

respectively. Finally, we note that [26, Proposition 3.4]

dimH(U) ≤ dimB(U) ≤ dimB(U) (6)

for all nonempty subsets in Euclidean spaces.
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2 Main Results

Our first main result provides a threshold for recovery of matrices X from rank-1 measure-

ments in a very general setting. Specifically, the matrices X are assumed to take value in

some set U and the recovery threshold is in terms of either dimH(U) or dimH(U − U).

Theorem 2.1. For every nonempty set U ⊆ Rm×n, the following holds:

i) The mapping

U → Rk (7)

X 7→ (aT
1Xb1 . . . aT

kXbk)
T (8)

is one-to-one for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k provided that

dimH(U − U) < k.

ii) Suppose that U is Borel and consider an m × n random matrix X satisfying P[X ∈

U ] = 1. Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, there exists a

Borel-measurable mapping g : Rk → Rm×n satisfying

P
[
g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
̸= X

]
= 0 (9)

provided that dimH(U) < k.

Proof. See Section 5.

The first part of the theorem states that in the deterministic case, k > dimH(U − U)

rank-1 measurements suffice for unique recovery of X ∈ U (except for measurement vectors

ai, bi supported on a Lebesgue null-set). In the probabilistic setting of the second part,

k > dimH(U) measurements suffice for the existence of a Borel-measurable recovery mapping

achieving zero error. While these are the most general versions of our recovery results, it

can be difficult to evaluate dimH(U) and dimH(U −U) for sets U with interesting structural

properties. In Section 3, we shall see, however, that these dimensions are easily computed
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for rectifiable sets, which, in turn, encompass many structures of practical relevance such as

low rank or sparsity.

A version of Theorem 2.1 in terms of lower Minkowski dimension instead of Hausdorff

dimension was found by a subset of the authors of the present paper in [25, Theorem 2]

and was subsequently extended by Li et al. to the complex-valued case in [27, Theorem 8].

As lower Minkowski dimension is always greater than or equal to Hausdorff dimension (see

(6)), Theorem 2.1 strengthens [25, Theorem 2]. In addition, lower Minkowski dimension is

defined for bounded sets U only, a restriction not shared by Hausdorff dimension.

A vectorization argument, concretely, stacking the columns of the data matrix X and

the measurement matrices Ai, shows that [22, Theorem 3.7] implies Item i) in Theorem 2.1

and [22, Corollary 3.4] implies Item ii), in both cases, however, for the rank-1 measurement

matrices aib
T
i replaced by generic measurement matrices Ai ∈ Rm×n. As the set of rank-

1 matrices is a null-set when viewed as a subset of Rm×n, these results do not imply our

Theorem 2.1. Furthermore, the technical challenges in establishing Theorem 2.1 are quite

different from those encountered in [22], which, in turn, builds on [21]. In particular, here

we need a stronger concentration of measure inequality (see Lemma 6.2 in Section 6).

The proof of Theorem 2.1 detailed in Section 5 is based on the following result, which is

similar in spirit to the null-space property in compressed sensing theory [28, Theorem 2.13]:

Proposition 2.1. Consider a nonempty set U ⊆ Rm×n with dimH(U) < k. Then,

{X ∈ U\{0} : (aT
1Xb1 . . . aT

kXbk)
T = 0} = ∅, (10)

for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k.

Proof. See Section 6.

Our second main result establishes thresholds for Hölder-continuous recovery, that is,

recovery which exhibits robustness against additive perturbations or noise. Here, we have

to impose the stricter technical condition of bounded upper Minkowski dimension dimB(U)

and, in turn, can only consider bounded sets U .
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Theorem 2.2. For every nonempty and bounded set U ⊆ Rm×n and β ∈ (0, 1), the following

holds:

i) Suppose that

dimB(U − U)
1− β

< k. (11)

Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k×Rn×k, there exists a β-Hölder

continuous mapping g : Rk → Rm×n satisfying

g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
= X, for all X ∈ U . (12)

ii) Suppose that U is Borel with

dimB(U)
1− β

< k. (13)

Fix ε > 0 arbitrarily and consider an m × n random matrix X with P[X ∈ U ] = 1.

Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k×Rn×k, there exists a β-Hölder

continuous mapping g : Rk → Rm×n satisfying

P
[
g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
̸= X

]
≤ ε. (14)

Proof. See Section 7.

Again, the first part of the theorem concerns deterministic data matrices X for which

k > dimB(U −U)/(1− β) rank-1 measurements (except for measurement vectors supported

on a Lebesgue null-set) guarantee β-Hölder continuous recovery. The higher the desired

Hölder exponent β, the larger the number of measurements has to be. In the probabilistic

setting of the second part of the theorem, k > dimB(U)/(1 − β) measurements suffice for

β-Hölder continuous recovery. We hasten to add that recovery is only with probability 1−ε,

where, however, ε can be arbitrarily small. Also note that the number of measurements, k,
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is independent of ε. We shall evaluate dimB(U) for several rectifiable sets with interesting

structural properties in Section 3 and for attractor sets of recurrent iterated function systems

in Section 4.

A version of Theorem 2.2 for the rank-1 measurements replaced by measurements taken

with general matrices can be obtained from results available in the literature. Specifically,

the equivalent of Item i) in Theorem 2.2 follows from [29, Theorem 4.3], that of Item ii) is

obtained from [20, Theorem 2], in both cases by vectorization.

The proof of Theorem 2.2 is again based on a variant of the null-space property as used

in compressed sensing theory, concretely on the following result:

Proposition 2.2. Consider a nonempty and bounded set U ⊆ Rm×n, and suppose that there

exists a β ∈ (0, 1) such that

dimB(U)
1− β

< k. (15)

Then,

inf

{
∥(aT

1Xb1 . . . aT
kXbk)

T∥2
∥X∥1/β2

: X ∈ U\{0}

}
> 0, (16)

for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k.

Proof. See Section 8.

Regarding converse statements, i.e., the question of whether too few rank-1 measurements

of a given random matrix X necessarily render unique reconstruction impossible, we note

that [21, Corollary IV.2] allows a partial answer. Specifically, the simple characterization of

the support set U of X through its dimension dimB(U) does not enable a general impossibility

result. If one assumes, however, that the vectorized version of X is k-analytic according

to [21, Definition IV.2], then we can conclude that fewer than k measurements necessarily

lead to reconstruction of X being impossible, with probability 1. This statement holds for

arbitrary measurement matrices, so in particular also for rank-1 matrices.
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3 Rectifiable Sets

To illustrate the practical applicability of the general recovery thresholds obtained in The-

orems 2.1 and 2.2 and expressed in terms of Hausdorff and upper Minkowski dimension, we

first introduce the concept of rectifiable sets, a central element of geometric measure theory

[23]. The relevance of rectifiability derives itself from the fact that a broad class of struc-

tured data matrix support sets we are interested in turns out to be rectifiable. In addition,

Hausdorff and upper Minkowski dimensions of rectifiable sets have been characterized in

significant detail in the literature.

We start with the formal definition of rectifiable sets.

Definition 3.1. [23, Definition 3.2.14] For s ∈ N, the set U ⊆ Rm×n is

i) s-rectifiable if there exist a nonempty and compact set A ⊆ Rs and a Lipschitz mapping

φ : A → Rm×n such that U = φ(A);

ii) countably s-rectifiable if it is the countable union of s-rectifiable sets;

iii) countably H s-rectifiable if it is H s-measurable and there exists a countably s-rectifiable

set V ⊆ Rm×n such that H s(U \ V) = 0.

We have the following obvious chain of implications:

s-rectifiable ⇒ countably s-rectifiable ⇒ countably H s-rectifiable.

Countably H s-rectifiable sets thus constitute the most general class.

We proceed to state preparatory results, which will be used later to establish that many

practically relevant sets of structured matrices are (countably) s-rectifiable and to quantify

the associated rectifiability parameter s.

Lemma 3.1. (Properties of s-rectifiable sets)

i) If U ⊆ Rm×n is s-rectifiable, then it is t-rectifiable for all t ∈ N with t > s.

ii) For Ui ⊆ Rm×n si-rectifiable with si ≤ s, i = 1, . . . , N , the set

U =

N⋃
i=1

Ui (17)

is s-rectifiable. In particular, the finite union of s-rectifiable sets is s-rectifiable.
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iii) If U ⊆ Rm1×n1 is s-rectifiable and V ⊆ Rm2×n2 is t-rectifiable, then U × V is (s +

t)-rectifiable.

iv) Every compact subset of an s-dimensional C1-submanifold [30, Definition 5.3.1] of Rm×n

is s-rectifiable.

Proof. See Appendix A.

Lemma 3.2. (Properties of countably s-rectifiable sets)

i) If U ⊆ Rm1×n1 is countably s-rectifiable and V ⊆ Rm2×n2 is countably t-rectifiable, then

U × V is countably (s+ t)-rectifiable.

ii) For Ui ⊆ Rm×n countably si-rectifiable with si ≤ s, i ∈ N, the set

U =
⋃
i∈N

Ui (18)

is countably s-rectifiable.

iii) Every s-dimensional C1-submanifold [30, Definition 5.3.1] of Rm×n is countably s-

rectifiable. In particular, every s-dimensional affine subspace of Rm×n is countably

s-rectifiable.

Proof. Follows from [21, Lemma III.1].

To establish the rectifiability of structured matrices obtained as products or sums of

structured matrices, we need to understand the impact of continuous mappings on rectifiabil-

ity. Specifically, we shall need the following result from [21, Lemma III. 3] for locally-Lipschitz

mappings, i.e., functions that are Lipschitz continuous on all compact subsets:

Lemma 3.3. Let U ⊆ Rm1×n1 and let f : Rm1×n1 → Rm2×n2 be a locally-Lipschitz mapping.

i) If U is s-rectifiable, then f(U) is s-rectifiable.

ii) If U is countably s-rectifiable, then f(U) is countably s-rectifiable.

We will mainly use the following generalization of Lemma 3.3:

Lemma 3.4. Consider a locally-Lipschitz mapping f :×N

i=1
Rmi×ni → Rm×n, and suppose

that Ui ⊆ Rmi×ni , for i = 1, . . . , N .
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i) If Ui is si-rectifiable, for i = 1, . . . , N , then f(U1 × · · · × UN ) is s-rectifiable with s =∑N
i=1 si.

ii) If Ui is countably si-rectifiable, for i = 1, . . . , N , then f(U1 × · · · × UN ) is countably

s-rectifiable with s =
∑N

i=1 si.

Proof. Item i) follows from Item iii) of Lemma 3.1 and Item i) of Lemma 3.3, and Item ii)

follows from Item i) of Lemma 3.2 and Item ii) of Lemma 3.3.

Before we can particularize our results in Theorems 2.1 and 2.2, it remains to characterize

the Hausdorff dimension and the upper Minkowski dimension of rectifiable sets in terms of

their rectifiability parameters.

Lemma 3.5. Let U ⊆ Rm×n be nonempty. Then, the following properties hold:

i) If U is countably H s-rectifiable, then

dimH(U) ≤ s. (19)

ii) If U ⊆ V with V ⊆ Rm×n s-rectifiable, then

dimB(U) ≤ s. (20)

Proof. We first prove Item i). Since U is countably H s-rectifiable, by Definition 3.1, there

exists a countably s-rectifiable set V ⊆ Rm×n with H s(U \ V) = 0. By [21, Lemma III.2],

the upper modified Minkowski dimension of a countably s-rectifiable set V is upper-bounded

by s. Combined with [26, Equation (3.27)], which states that the Hausdorff dimension of V

is upper-bounded by the upper modified Minkowski dimension, this yields

dimH(V) ≤ s. (21)
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Since H s(U \ V) = 0, the definition of Hausdorff dimension implies

dimH(U \ V) ≤ s (22)

so that

dimH(U) = max{dimH(U ∩ V),dimH(U \ V)} (23)

≤ max{dimH(V),dimH(U \ V)} (24)

≤ s, (25)

where (23) follows from countable stability of Hausdorff dimension [26, Section 3.2], in (24)

we used monotonicity of Hausdorff dimension [26, Section 3.2], and (25) is by (21) and (22).

To establish Item ii), we note that, by Definition 3.1, a nonempty s-rectifiable set V can

be written as V = φ(A) for a Lipschitz mapping φ : A → Rm×n and a nonempty compact

set A ⊆ Rs. We thus have

dimB(U) ≤ dimB(V) (26)

≤ dimB(A) (27)

≤ s, (28)

where (26) and (28) follow from the monotonicity of upper Minkowski dimension [26, Section

2.2] upon noting that the compact set A is a subset of an open ball in Rs of sufficiently large

radius, which has upper Minkowski dimension s, and in (27) we applied [26, Proposition 2.5,

Item (a)].

The following result will be useful in particularizing our deterministic recovery thresholds

in Item i) of Theorem 2.1 and Item i) of Theorem 2.2 to rectifiable sets.

Lemma 3.6. Let U ⊆ Rm×n be nonempty. Then,

dimH(U − U) ≤ dimB(U − U) ≤ 2 dimB(U). (29)
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If, in addition, U is (countably) s-rectifiable, then U − U is (countably) 2s-rectifiable with

dimH(U − U) ≤ 2s. (30)

Proof. The first inequality in (29) is by (6) and the second inequality in (29) follows from [26,

Proposition 2.5, Item (a)] with f(A1,A2) = A1−A2 and the product formula [26, Equation

(7.9)]. The set U − U is (countably) 2s-rectifiable owing to Item i) (Item ii)) in Lemma 3.4

with f(A1,A2) = A1 −A2. Together with Item i) in Lemma 3.5 this yields (30).

We are now in a position to particularize the results in Theorems 2.1 and 2.2 to rectifiable

sets.

Theorem 3.1. (Recovery for rectifiable sets)

i) Let U ⊆ Rm×n be nonempty with U − U countably H s-rectifiable. Then, for k > s and

Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, every X ∈ U can be recovered

uniquely from the rank-1 measurements

(aT
1Xb1 . . . aT

kXbk)
T. (31)

ii) Let U ,V ⊆ Rm×n be nonempty with V s-rectifiable and U − U ⊆ V. Fix β ∈ (0, 1− s/k)

with k > s. Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, every

X ∈ U can be recovered uniquely from the rank-1 measurements

(aT
1Xb1 . . . aT

kXbk)
T (32)

by a β-Hölder continuous mapping g.

iii) Let U ⊆ Rm×n be nonempty, Borel, and countably H s-rectifiable. Suppose that the ran-

dom matrix X satisfies P[X ∈ U ] = 1. Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈

Rm×k × Rn×k, there exists a Borel-measurable mapping g : Rk → Rm×n, satisfying

P
[
g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
̸= X

]
= 0 (33)
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provided that k > s.

iv) Let U ,V ⊆ Rm×n be nonempty with U Borel, V s-rectifiable, and U ⊆ V. Suppose that

the random matrix X satisfies P[X ∈ U ] = 1. Fix ε > 0 and let β ∈ (0, 1 − s/k) with

k > s. Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, there exists a

β-Hölder continuous mapping g : Rk → Rm×n satisfying

P
[
g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
̸= X

]
≤ ε. (34)

Proof. The proof is a straightforward combination of results already established:

• Item i) is by Item i) in Lemma 3.5 combined with Item i) in Theorem 2.1.

• Item ii) is by Item ii) in Lemma 3.5 combined with Item i) in Theorem 2.2.

• Item iii) is by Item i) in Lemma 3.5 combined with Item ii) in Theorem 2.1.

• Item iv) is by Item ii) in Lemma 3.5 combined with Item ii) in Theorem 2.2.

We now apply Theorem 3.1 to various interesting structured sets and start with sparse

matrices.

Example 3.1. Let Am×n
s be the set of s-sparse matrices in Rm×n, i.e., the set of matrices

with at most s nonzero entries. Further, let Am×n
I denote the set of matrices that have their

nonzero entries indexed by I ⊆ {1, . . . ,m}×{1, . . . , n}. Obviously, Am×n
I is a linear subspace

of Rm×n of dimension |I|. By Item iii) of Lemma 3.2, the set Am×n
I is hence countably |I|-

rectifiable. As Am×n
s =

⋃
I:|I|=s A

m×n
I , it follows from Item ii) in Lemma 3.2 that Am×n

s is

countably s-rectifiable. Also note that Am×n
s −Am×n

s = Am×n
2s is countably 2s-rectifiable.

Similarly, for every bounded subset U ⊆ Am×n
s , U is s-rectifiable. This follows by first

noting that U is compact in Rm×n and, therefore, for given I, Am×n
I ∩ U is a com-

pact subset of the linear subspace Am×n
I . Hence, by Items ii) and iv) of Lemma 3.1,

U =
⋃

I:|I|=s(A
m×n
I ∩ U) is s-rectifiable.

We can therefore apply the corresponding items of Theorem 3.1 to obtain recovery

thresholds for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k for the following sets:
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i) If U ⊆ Am×n
s is nonempty, then every X ∈ U can be recovered uniquely from k > 2s

measurements since U − U ⊆ Am×n
2s is countably H 2s-rectifiable.

ii) If U ⊆ Am×n
s is nonempty and bounded, then every X ∈ U can be recovered uniquely

from k > 2s measurements by a β-Hölder continuous mapping with β ∈ (0, 1 − 2s/k)

since V = U − U ⊆ Am×n
2s is (2s)-rectifiable.

iii) If U ⊆ Rm×n is nonempty, Borel, and satisfies H s(U \ Am×n
s ) = 0, then every X with

P[X ∈ U ] = 1 can be recovered from k > s measurements with zero error probability

since U is countably H s-rectifiable.

iv) If U ⊆ Am×n
s is nonempty, Borel, and bounded, then every X with P[X ∈ U ] = 1 can be

recovered from k > s measurements with arbitrarily small error probability by a β-Hölder

continuous mapping with β ∈ (0, 1− s/k) since V = U ⊆ Am×n
s is s-rectifiable.

We proceed to particularizing our recovery thresholds for low-rank matrices.

Example 3.2. The set Mm×n
r of matrices in Rm×n that have rank no more than r is a

finite union of {0} and C1-submanifolds of Rm×n of dimensions no more than (m+n−r)r.

This follows by noting that the set of matrices in Rm×n of fixed rank k is a C1-submanifold

of Rm×n of dimension (m + n − k)k [31, Ex. 5.30], [32, Ex. 1.7]. Application of Items ii)

and iii) in Lemma 3.2 therefore yields that Mm×n
r is countably (m+n−r)r-rectifiable. Also

note that Mm×n
r −Mm×n

r = Mm×n
2r .

Similarly, for every bounded subset U ⊆ Mm×n
r , U is (m + n − r)r-rectifiable. This

follows by first noting that U is compact in Rm×n and, therefore, the intersection of U with

any of the finitely many C1-submanifolds participating in Mm×n
r is a compact subset of a

C1-submanifold. Hence, by Items ii) and iv) of Lemma 3.1, U is (m+ n− r)r-rectifiable.

We can therefore apply the corresponding items of Theorem 3.1 to obtain recovery

thresholds for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k for the following sets:

i) If U ⊆ Mm×n
r is nonempty, then every X ∈ U can be recovered uniquely from k >

2(m+n−2r)r measurements since U−U ⊆ Mm×n
2r is countably H 2(m+n−2r)r-rectifiable.

ii) If U ⊆ Mm×n
r is nonempty and bounded, then every X ∈ U can be recovered uniquely

from k > 2(m + n − 2r)r measurements by a β-Hölder continuous mapping with β ∈

(0, 1− 2(m+ n− 2r)r/k) since V = U − U ⊆ Mm×n
2r is (2(m+ n− 2r)r)-rectifiable.
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iii) If U ⊆ Rm×n is nonempty, Borel, and satisfies H s(U \Mm×n
r ) = 0, then every X with

P[X ∈ U ] = 1 can be recovered from k > (m + n − r)r measurements with zero error

probability since U is countably H (m+n−r)r-rectifiable.

iv) If U ⊆ Mm×n
r is nonempty, Borel, and bounded, then every X with P[X ∈ U ] = 1 can

be recovered from k > (m+n− r)r measurements with arbitrarily small error probability

by a β-Hölder continuous mapping with β ∈ (0, 1−(m+n−r)r/k) since V = U ⊆ Mm×n
r

is ((m+ n− r)r)-rectifiable.

We proceed with the development of our general theory by demonstrating that simple,

albeit relevant algebraic manipulations preserve rectifiability and hence allow the direct

statement of recovery thresholds in the spirit of Theorem 3.1 through application of the

approach just described.

Lemma 3.7. Let Ui ⊆ Rm×n, for i = 1, 2, and define

i) A = {XXT : X ∈ U1},

ii) A× = {X1X
T
2 : X1 ∈ U1,X2 ∈ U2},

iii) A+ = {X1 +X2 : X1 ∈ U1,X2 ∈ U2},

iv) A⊗ = {X1 ⊗X2 : X1 ∈ U1,X2 ∈ U2}.

If the sets Ui are (countably) si-rectifiable, for i = 1, 2, then A is (countably) s1-rectifiable

and A×,A+, and A⊗ are (countably) (s1 + s2)-rectifiable.

Proof. The mapping X 7→ XXT is continuously differentiable, and hence locally Lipschitz.

Thus, by Item ii) in Lemma 3.4, the set A is countably s1-rectifiable for U1 countably

s1-rectifiable, and, by Item i) in Lemma 3.4, the set A is s1-rectifiable for s1-rectifiable

U1. Similarly, all of the mappings f×(X1,X2) 7→ X1X
T
2 , f+(X1,X2) 7→ X1 + X2, and

f⊗(X1,X2) 7→ X1 ⊗X2 are continuously differentiable, and thus locally Lipschitz. Hence,

by Item ii) in Lemma 3.4, the sets A×, A+, and A⊗ are countably (s1+ s2)-rectifiable when

the sets Ui are countably si-rectifiable, for i = 1, 2. Likewise, by Item i) in Lemma 3.4,

the sets A×, A+, and A⊗ are (s1 + s2)-rectifiable when the sets Ui are si-rectifiable, for

i = 1, 2.

Lemma 3.7 in combination with Examples 3.1 and 3.2 immediately yields recovery thresh-

olds for sums, products, and Kronecker products of sparse and low-rank matrices and covers,
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e.g., the structured matrices discussed in [14]. A concrete example making use of Item ii) in

Lemma 3.7 is the QR-decomposition of matrices with sparse R-components.

Example 3.3. Let m,n ∈ N with m ≥ n and denote by Cm×n
s the set of all matrices in

Rm×n with s-sparse upper triangular matrix in their QR-decomposition, i.e,

Cm×n
s = {QR : Q ∈ Qm×m,R ∈ Rm×n

s }, (35)

where Rm×n
s ⊆ Am×n

s designates the set of all s-sparse upper triangular matrices and Qm×m

stands for the set of orthogonal matrices in Rm×m. Employing the same reasoning as in

Example 3.1, it follows that Rm×n
s is countably s-rectifiable. Further, Qm×m is a compact

m(m−1/2)-dimensional C1-submanifold of Rm×m [33, Section 1.3.1] and thus, by Item iv) in

Lemma 3.1, (m(m−1)/2)-rectifiable. We therefore conclude that, by Item ii) in Lemma 3.7,

Cm×n
s is countably (m(m−1)/2+s)-rectifiable. Further, thanks to Lemma 3.6, Cm×n

s −Cm×n
s

is countably (m(m− 1) + 2s)-rectifiable.

Now, consider a bounded subset U ⊆ Cm×n
s . Then,

U2 =
{
R ∈ Rm×n

s : ∃Q ∈ Qm×m with QR ∈ U
}

(36)

is bounded because multiplication by Q does not change the 2-norm and U ⊆ Ũ := {QR : Q ∈

Qm×m,R ∈ U2}. Now, Qm×m is m(m− 1)/2-rectifiable, and using the same argumentation

as in Example 3.1 with Rm×n
s in place of Am×n

s , it follows that U2 is s-rectifiable. Thus, Ũ is

(m(m−1)/2+ s)-rectifiable owing to Item ii) in Lemma 3.7. Further, thanks to Lemma 3.6,

Ũ − Ũ is (m(m− 1) + 2s)-rectifiable.

We can therefore apply the corresponding items of Theorem 3.1 to obtain recovery

thresholds for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k for the following sets:

i) If U ⊆ Cm×n
s is nonempty, then every X ∈ U can be recovered uniquely from k > m(m−

1)+2s measurements since U −U ⊆ Cm×n
s −Cm×n

s is countably H m(m−1)+2s-rectifiable.

ii) If U ⊆ Cm×n
s is nonempty and bounded, then every X ∈ U can be recovered uniquely

from k > m(m − 1) + 2s measurements by a β-Hölder continuous mapping with β ∈

(0, 1−(m(m−1)+2s)/k) since V = Ũ −Ũ ⊆ Cm×n
s −Cm×n

s is (m(m−1)+2s)-rectifiable.
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iii) If U ⊆ Rm×n is nonempty, Borel, and satisfies H s(U \ Cm×n
s ) = 0, then every X with

P[X ∈ U ] = 1 can be recovered from k > m(m− 1)/2 + s measurements with zero error

probability since U is countably H m(m−1)/2+s-rectifiable.

iv) If U ⊆ Am×n
s is nonempty, Borel, and bounded, then every X with P[X ∈ U ] = 1

can be recovered from k > m(m − 1)/2 + s measurements with arbitrarily small error

probability by a β-Hölder continuous mapping with β ∈ (0, 1− (m(m−1)/2+s)/k) since

V = Ũ ⊆ Cm×n
s is (m(m− 1)/2 + s)-rectifiable.

We finally note that since Lemma 3.4 holds for general N ∈ N, Lemma 3.7 is readily

extended to sums, products, and Kronecker products of more than two matrices. This exten-

sion allows to deal, inter alia, with singular value decompositions and eigendecompositions

in a manner akin to Example 3.3. Another interesting example, which can be worked out

using the same arguments as in Example 3.3 with Item iii) in Lemma 3.7 in place of Item ii)

in Lemma 3.7, is the recovery of matrices that are sums of low-rank and sparse matrices.

4 Recurrent Iterated Function Systems

We now demonstrate how our theory can be applied to sets of fractal nature, which do not

fall into the rich class of rectifiable sets. Specifically, we investigate attractor sets of recurrent

iterated function systems defined as follows [24]. Let K be a compact subset of (Rm, ∥ · ∥2)

and fix n ∈ N. For i = 1, . . . , n, let wi : K → K be similitudes of contractivity si ∈ [0, 1), i.e.,

∥wi(x)− wi(y)∥2 = si∥x− y∥2, for all x, y ∈ K and i = 1, . . . , n, (37)

and designate w = (w1, . . . , wn)
T. Finally, let P ∈ [0, 1]n×n with entries pi,j in the i-th row

and j-th column. The triple (K,w,P ) is referred to as a recurrent iterated function system.

In what follows, we assume that P is

i) row-stochastic, i.e.,

n∑
j=1

pi,j = 1, for i ∈ {1, . . . , n}, and (38)
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ii) irreducible, i.e., for every i, j ∈ {1, . . . , n}, there exist i1, . . . , im ∈ {1, . . . , n} such that

i1 = i, im = j, and

pi1,i2 pi2,i3 . . . pim−1,im > 0. (39)

Further, define the connectivity matrix C ∈ {0, 1}n×n with entries ci,j in the i-th row and

j-th column according to

ci,j =


1, if pi,j > 0

0, if pi,j = 0,

for i, j ∈ {1, . . . , n} (40)

and set I(i) = {j ∈ {1, . . . , n} : ci,j = 1} for i ∈ {1, . . . , n}. Note that P is irreducible if and

only if C is irreducible. For every recurrent iterated function system (K,w,P ), there exist

unique nonempty compact sets A1, . . . ,An ⊆ K satisfying [24, Corollary 3.5]

Ai =
⋃

j∈I(i)

wi(Aj), for i = 1, . . . , n. (41)

The set

U = (A1, . . . ,An) ⊆ Rm×n (42)

is called the attractor set of the recurrent iterated function system (K,w,P ). We say that

the sets Ai in (41) are nonoverlapping if, for every i ∈ {1, . . . , n},

Aj ∩ Ak = ∅, for all j, k ∈ I(i) with j ̸= k. (43)

To apply the recovery thresholds from Theorems 2.1 and 2.2 to attractor sets U according

to (42), we need the following dimension result:

Theorem 4.1. [24, Theorem 4.1] Let (K,w,P ) be a recurrent iterated function system

with P satisfying (38) and (39). For every t ∈ (0,∞), define the diagonal matrix S(t) =
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diag(st1, s
t
2, . . . , s

t
n), where si is the contractivity of the similitude wi, for i = 1, . . . , n. Let

U = (A1, . . . ,An) be the attractor set of (K,w,P ) and suppose that the sets A1, . . . ,An are

nonoverlapping. Finally, let d be the unique positive number such that 1 is an eigenvalue of

S(d)C of maximum modulus (cf. [24, Perron-Frobenius Theorem]). Then, it holds that

max
{
dimB(Ai) : i = 1, . . . , n

}
= d. (44)

One obtains the following immediate consequence:

Corollary 4.1. Under the assumptions of Theorem 4.1, the attractor set

U = (A1, . . . ,An) satisfies

dimB(U) ≤ nd. (45)

Proof. Follows from Theorem 4.1 and the product formula [26, Equation (7.9)].

We next present a simple example application of Theorem 4.1 and Corollary 4.1, which

can easily be extended to higher dimensions.

Example 4.1. Let s ∈ (0, 1/2) and consider the similitudes wi : [0, 1]
2 → [0, 1]2 of contrac-

tivity s defined as wi(x) = sx + bi, for i = 1, . . . , 4, where b1 = (0, 0)T, b2 = (1 − s, 0)T,

b3 = (0, 1− s)T, and b4 = (1− s, 1− s)T. Now, let P ∈ [0, 1]4×4 be a row-stochastic matrix

and suppose that pi,i = 0, for i = 1, . . . , 4, and pi,j > 0, for i, j ∈ {1, . . . , 4} with i ̸= j.

Further, let A1, . . .A4 be as in (41) and U as in (42). By construction, the sets Ai are

nonoverlapping as (41) implies

Ai ⊆ wi([0, 1]
2) for i = 1, . . . , 4 (46)
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and the w′
is have pairwise disjoint codomains. Next, note that, owing to [34, Theorem 1.3.22],

the characteristic polynomial of the all-ones matrix

J =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


(47)

is given by

pJ (x) = det(J − xI) = (x− 4)x3, (48)

where I = diag(1, 1, 1, 1). We conclude that the characteristic polynomial of the matrix

S(t)C equals

pS(t)C(x) = pstC(x) (49)

= s4t det(C − s−txI) (50)

= s4t det(J − (s−tx+ 1)I) (51)

= s4tpJ (s
−tx+ 1) (52)

= s4t(s−tx− 3)(s−tx+ 1)3, (53)

where (51) follows from C = J − I and in (53) we applied (48). Hence, the eigenvalue

of maximum modulus of S(t)C is λmax = 3st. Setting t = log(1/3)/ log(s) therefore yields

λmax = 1 so that

max
{
dimB(Ai) : i = 1, . . . , 4

}
=

log(1/3)

log(s)
(54)
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owing to Theorem 4.1 and hence

dimB(U) ≤
4 log(1/3)

log(s)
(55)

thanks to Corollary 4.1.

The upper bound in (45) now leads to the following recovery thresholds:

Theorem 4.2. (Recovery of matrices taking values in attractor sets) Let U be the attractor

set of a recurrent iterated function system satisfying the assumptions of Theorem 4.1. Then,

the following statements hold.

i) For k > 2nd and Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, every X ∈ U

can be recovered uniquely from the rank-1 measurements

(aT
1Xb1 . . . aT

kXbk)
T. (56)

ii) Let β ∈
(
0,
(
1 − 2nd

k

))
with k > 2nd. Then, recovery in Item i) can be accomplished by

a β-Hölder continuous mapping g.

iii) Let X be a random matrix satisfying P[X ∈ U ] = 1. Then, for Lebesgue a.a.

((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, there exists a Borel-measurable mapping

g : Rk → Rm×n satisfying

P
[
g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
̸= X

]
= 0 (57)

provided that k > nd.

iv) Let X be a random matrix satisfying P[X ∈ U ] = 1, fix ε > 0, and let β ∈
(
0,
(
1− nd

k

))
with k > nd. Then, for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k, there

exists a β-Hölder continuous mapping g : Rk → Rm×n satisfying

P
[
g
(
(aT

1Xb1 . . . aT
kXbk)

T
)
̸= X

]
≤ ε. (58)
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Proof. With dimB(U) ≤ nd from Corollary 4.1, we have

dimH(U − U) ≤ dimB(U − U) ≤ 2dimB(U) ≤ 2nd (59)

thanks to Lemma 3.6. The statements in Item i)–Item iv) now follow readily from the

corresponding parts of Theorems 2.1 and 2.2.

5 Proof of Theorem 2.1

Item i) is by linearity of the mapping defined in (7)–(8) combined with Proposition 2.1

applied to the set U − U .

The proof of Item ii) follows along the same lines as the proof of [21, Theorem II.1].

We therefore present a proof sketch only. First, note that by [22, Lemma 2.3], there exist

compact sets Ui ⊆ U , i ∈ N, such that P[X ∈ V] = 1, where

V =
⋃
i∈N

Ui. (60)

Next, consider the “encoder” mapping3

e : Rm×k × Rn×k × Rm×n → Rk (61)(
A,B,V

)
7→ (aT

1V b1 . . . aT
kV bk)

T. (62)

With the decomposition of V in (60), argumentation as in [21, Section V.A] (with the

mapping ∥y−Av∥2 in [21, (139)–(140)] replaced by ∥y−e(A,B,V )∥2) implies the existence

of a measurable mapping

ĝ : Rm×k × Rn×k × Rk → Rm×n (63)

A×B × y 7→ X (64)

3A and B denote the matrices with ai and bi, respectively, in their i-th column.
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such that

e
(
A,B, ĝ(A,B,y)

)
= y, for all A ∈ Rm×k, B ∈ Rn×k and y ∈ e({A} × {B} × V). (65)

Moreover, the mapping ĝ is guaranteed to deliver an X ∈ V that is consistent if at least one

such consistent X ∈ V exists, otherwise an error is declared by delivering an error symbol

not contained in V. Next, for every A ∈ Rm×k and B ∈ Rn×k, let pe(A,B) denote the

probability of error defined as

pe(A,B) = P[ĝ(A,B, e(A,B,X)) ̸= X]. (66)

We now show that pe(A,B) = 0 for Lebesgue a.a. (A,B). We have

∫
pe(A,B) dλ(A,B) (67)

= E
[
λ
({

(A,B) : g
(
A,B, e(A,B,X)

)
̸= X

})
χV(X)

]
(68)

≤ E
[
λ
({

(A,B) : {Ṽ ∈ VX : e(A,B, Ṽ ) = 0} ≠ {0}
})]

, (69)

where (68) follows from Fubini’s theorem [35, Theorem 1.14] together with P[X ∈ V] = 1,

and in (69), we set VX = {V − X : V ∈ V} and used the fact that, by (65), V :=

ĝ
(
A,B, e(A,B,X)

)
̸= X with X ∈ V implies that V ∈ V\{X} with

e(A,B,X) = e(A,B,V ), (70)

i.e., e(A,B,V −X) = 0. Finally, since H k(VX) = H k(V) by the translation invariance of

H k and H k(V) = 0 as a consequence of V ⊆ U and dimH(U) < k, the expectation in (69)

is equal to zero owing to Proposition 2.1. Finally, for fixed A,B, set g = ĝ(A,B, ·).

26



6 Proof of Proposition 2.1

For every j ∈ N, set

A(j) = Bm(0, j)× · · · × Bm(0, j)︸ ︷︷ ︸
k times

and (71)

B(j) = Bn(0, j)× · · · × Bn(0, j)︸ ︷︷ ︸
k times

. (72)

By countable subadditivity of Lebesgue measure, it suffices to show that

{
X ∈ U\{0} : (aT

1Xb1 . . . aT
kXbk)

T = 0
}
= ∅, (73)

for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ A(j) × B(j) and all j ∈ N. By Lemma 6.1

below, (73) then holds, for all j ∈ N, with probability one if the deterministic matrices(
(a1 . . .ak), (b1 . . . bk)

)
∈ A(j) × B(j) are replaced by independent random matrices with

columns ai, i = 1, . . . , k, independent and uniformly distributed on Bm(0, j), and columns bi,

i = 1, . . . , k, independent and uniformly distributed on Bn(0, j). By countable subadditivity

of Lebesgue measure, this finally implies that (10) can be violated only on a set of Lebesgue

measure zero, which concludes the proof.

Lemma 6.1. Let s > 0 and take A = (a1 . . . ak) and B = (b1 . . .bk) to be independent

random matrices with columns ai, i = 1, . . . , k, independent and uniformly distributed on

Bm(0, s), and columns bi, i = 1, . . . , k, independent and uniformly distributed on Bn(0, s).

Consider U ⊆ Rm×n with dimH(U) < k. Then,

P := P
[
∃X ∈ U\{0} : (aT1Xb1 . . . aTkXbk)

T = 0
]
= 0. (74)

Proof. For every L ∈ N, let

UL =
{
X ∈ U : 1

L < σ1(X) < L
}

(75)
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and set

PL = P
[
∃X ∈ UL : (aT1Xb1 . . . aTkXbk)

T = 0
]
. (76)

By the union bound, we have

P ≤
∑
L∈N

PL. (77)

We now fix L ∈ N arbitrarily and prove that PL = 0. Let κ = (k + dimH(U))/2. As

k > dimH(U) by assumption, it follows that dimH(U) < κ < k. In particular, κ > dimH(U)

implies, by [26, Equation (3.11)], that H κ(U) = 0 and in turn H κ(UL) = 0 by monotonicity

of H κ. Thus, M κ(UL) = 0 by [26, Section 3.4], where the measure M κ is defined according

to

M κ(V) = lim
d→0

M κ
d (V) (78)

with

M κ
d (V) = inf

{∑
i∈N

εκi : V ⊆
⋃
i∈N

Bm×n

(
Xi,

εi
2

)}
, for all d > 0, (79)

where the infimum is taken over all possible ball centers Xi ∈ Rm×n and radii εi ∈ (0, d),

i ∈ N. Since M κ
d (UL) is nonnegative and monotonically nondecreasing as d→ 0, M κ(UL) =

0 implies M κ
d (UL) = 0, for all d > 0. Now, fix d > 0 and ε ∈ (0, (

√
kL)−κ) arbitrarily. As

M κ
d (UL) = 0, there must exist ball centers Xi ∈ Rm×n, i ∈ N, and radii εi, i ∈ N, such that

UL ⊆
⋃
i∈N

Bm×n

(
Xi,

εi
2

)
(80)
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and

∑
i∈N

εκi < ε. (81)

As (80) and (81) continue to hold upon removal of all i that satisfy

UL ∩ Bm×n

(
Xi,

εi
2

)
= ∅, (82)

we can assume, w.l.o.g., that

UL ∩ Bm×n

(
Xi,

εi
2

)
̸= ∅, for all i ∈ N. (83)

By doubling the radius, we can further construct a covering that has all its ball centers in

U . Concretely, by (83), for every i ∈ N, there exists Y i ∈ UL∩Bm×n(Xi, εi/2), and we have

Bm×n(Xi, εi/2) ⊆ Bm×n(Y i, εi). Thus, by (80),

UL ⊆
⋃
i∈N

Bm×n(Y i, εi). (84)

With the definition of UL in (75), we now obtain for the shifted ball centers

1
L < σ1(Y i) < L, for all i ∈ N. (85)

A union bound argument applied to (76) in combination with (84) yields

PL ≤
∑
i∈N

P
[
∃X ∈ Bm×n(Y i, εi) : (a

T
1Xb1 . . . aTkXbk)

T = 0
]
. (86)

29



To bound the individual probabilities on the right-hand side of (86), we proceed as follows.

Suppose that X ∈ Bm×n(Y i, εi) for some i ∈ N. Then, we have

∥(aT1Y ib1 . . . aTkY ibk)
T∥2 (87)

≤ ∥(aT1 (X − Y i)b1 . . . aTk (X − Y i)bk)
T∥2 + ∥(aT1Xb1 . . . aTkXbk)

T∥2 (88)

≤

√√√√ k∑
j=1

∥aj∥22∥X − Y i∥22∥bj∥22 + ∥(aT1Xb1 . . . aTkXbk)
T∥2 (89)

≤ s2
√
kεi + ∥(aT1Xb1 . . . aTkXbk)

T∥2, (90)

where in (90) we used that aj and bj are uniformly distributed on Bm(0, s) and Bn(0, s),

respectively, and X ∈ Bm×n(Y i, εi) by assumption. Thus, the event that there exists X ∈

Bm×n(Y i, εi) satisfying

(aT1Xb1 . . . aTkXbk)
T = 0 (91)

implies that ∥(aT1Y ib1 . . . aTkY ibk)T∥2 ≤ s2
√
kεi. Hence, we can further upper-bound PL

according to

PL ≤
∑
i∈N

P
[
∥(aT1Y ib1 . . . aTkY ibk)

T∥2 ≤ s2
√
kεi
]

(92)

≤ k
k
2

∑
i∈N

εki
2

k(m+n)
2

σ1(Y i)k

(
1 + log

(
σ1(Y i)√
kεi

))k

(93)

≤ C
∑
i∈N

εki

(
1 + log

(
L√
kεi

))k

(94)

= C
∑
i∈N

εκi ε
k−κ
i

(
1 + log

(
L√
kεi

))k

(95)

with

C = 2
k(m+n)

2
(
L
√
k
)k
, (96)
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where (93) is by Lemma 6.2 below for δ = s2
√
kεi and X = Y i upon noting that

s2
√
kεi < s2

√
kε1/κ (97)

<
s2

L
(98)

< σ1(Y i)s
2, for all i ∈ N. (99)

Here, (97) is by (81), in (98) we used ε < (
√
kL)−κ which holds by assumption, and (99)

follows from (85). As the log-term in (95) is dominated by εk−κ
i for εi → 0 thanks to k > κ,

(95) tends to zero for ε → 0 by (81). We can therefore conclude that PL = 0, which, as L

was arbitrary, by (77), implies P = 0.

Lemma 6.2. Let A = (a1 . . . ak) and B = (b1 . . .bk) be independent random matrices, with

columns ai, i = 1, . . . , k, independent and uniformly distributed on Bm(0, s) and columns

bi, i = 1, . . . , k, independent and uniformly distributed on Bn(0, s). Suppose that X ∈

Rm×n\{0}. Then, we have

P
[∥∥(aT1Xb1 . . . aTkXbk)

T
∥∥
2
≤ δ
]
≤ δk

2
k(m+n)

2

σ1(X)ks2k

(
1 + log

(
s2σ1(X)

δ

))k

, (100)

for all δ ≤ σ1(X)s2.

Proof. We have

P
[∥∥(aT1Xb1 . . . a

T
kXbk)

T
∥∥
2
≤ δ
]

(101)

= P
[ k∑
i=1

(aTi Xbi)
2 ≤ δ2

]
(102)

≤ P
[
|aTi Xbi| ≤ δ, for i = 1, . . . , k

]
(103)

= P
[
|aTXb| ≤ δ

]k
(104)

≤ δk
2

k(m+n)
2

σ1(X)ks2k

(
1 + log

(
s2σ1(X)

δ

))k

, (105)
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where in (104) a and b are independent with a uniformly distributed on Bm(0, s) and b

uniformly distributed on Bn(0, s) and, therefore, we can apply Lemma 6.3 below to obtain

(105).

Lemma 6.3. [27, Lemma 17]4 Let a and b be independent random vectors, with a uniformly

distributed on Bm(0, s) and b uniformly distributed on Bn(0, s), and suppose that X ∈

Rm×n\{0}. Then, we have

P[|aTXb| ≤ δ] ≤ δ
Dm,n

σ1(X)s2

(
1 + log

(
s2σ1(X)

δ

))
, for all δ ≤ σ1(X)s2, (106)

where5

Dm,n =
4V (n− 1, 1)V (m− 1, 1)

V (m, 1)V (n, 1)
(107)

≤ 2
m+n

2 . (108)

Proof. We start by applying Fubini’s Theorem [35, Theorem 1.14] and rewriting

P[|aTXb| ≤ δ] =
1

V (m, s)V (n, s)

∫
Bm(0,s)

h(a) dλ(a) (109)

with

h(a) =

∫
Bn(0,s)

χ{b∈Rn:|aTXb|≤δ}(b) dλ(b). (110)

Let X = UΣV be a singular value decomposition of X, where U ∈ Rm×m and V ∈ Rn×n

are orthogonal matrices, and

Σ =

D 0

0 0

 ∈ Rm×n (111)

4Since the assumption δ ≤ σ1(X)s2 is missing in [27, Lemma 17] we present the proof of the lemma for
completeness. A slightly weaker form of this result was first presented in [25, Lemma 5].

5We use the convention V (0, s) = 1, for all s ∈ R+.
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with D = diag(σ1(X) . . . σr(X)) and r = rank(X). Using the fact that Lebesgue measure

on Bm(0, s) and Bn(0, s) is invariant under rotations, we can write

P[|aTXb| ≤ δ] =
1

V (m, s)V (n, s)

∫
Bm(0,s)

h(Ua) dλ(a) (112)

and

h(Ua) =

∫
Bn(0,s)

χ{b∈Rn:|aTΣb|≤δ}(b) dλ(b). (113)

We now make the dependence on the largest eigenvalue σ1(X) explicit according to

h(Ua) =

∫
Bn−1(0,s)

∫ s

−s

χ{b1∈R:|aTΣb|≤δ,∥b∥≤s}(b1) dλ(b1) dλ
(
(b2 . . . bn)

T
)

(114)

≤
∫
Bn−1(0,s)

g
(
(b2 . . . bn)

T
)
dλ
(
(b2 . . . bn)

T
)

(115)

with

g
(
(b2 . . . bn)

T
)
= min

{
2s,

∫ ∞

−∞
χ{b1∈R:|

∑r
i=1 σi(X)aibi|≤δ}(b1) dλ(b1)

}
(116)

= min

{
2s,

∫ ∞

−∞
χ{b1∈R:|σ1(X)a1b1|≤δ}(b1) dλ(b1)

}
(117)

= 2min

{
s,

δ

σ1(X)|a1|

}
. (118)

Using (115) and (116)–(118) in (112), we obtain

P[|aTXb| ≤ δ] ≤ Dm,n

s2

∫ s

0

min

{
s,

δ

σ1(X)a1

}
dλ(a1) (119)

=
δDm,n

σ1(X)s2

(
1 + log

(
s2σ1(X)

δ

))
, (120)

for all δ ≤ σ1(X)s2. The upper bound on Dm,n follows from 2k/2 < V (k, 1) < 2k, for all

k ∈ N.
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7 Proof of Theorem 2.2

We first prove Item i). Consider the mapping

h : U → h(U) ⊆ Rk (121)

X 7→ (aT
1Xb1 . . . aT

kXbk)
T. (122)

Application of Proposition 2.2 to U − U establishes the existence of a c > 0 such that

∥h(U − V )∥2 ≥ c∥U − V ∥1/β2 , for all U ,V ∈ U , (123)

for Lebesgue a.a. ((a1 . . .ak), (b1 . . . bk)) ∈ Rm×k × Rn×k. Hence, by [20, Lemma 2], h

admits a β-Hölder continuous inverse h−1 : h(U) → U , which can be extended to the desired

β-Hölder continuous mapping g on Rk owing to [36, Theorem 1, Item ii)].

The proof of Item ii) follows along the same lines as that of [20, Theorem 2]. We therefore

present a proof sketch only. By [26, Proposition 2.6], we can assume, w.l.o.g., that U is

compact. Consider the sets A,Aj ⊆ Rm×k × Rn×k × Rm×n defined according to

A =

{(
A,B,X

)
: inf

{
∥(aT

1Ub1 . . . aT
kUbk)

T∥2
∥U∥1/β2

: U ∈ UX \{0}

}
= 0

}
(124)

and

Aj =

{(
A,B,X

)
: inf

{
∥(aT

1Ub1 . . . aT
kUbk)

T∥2
∥U∥1/β2

: U ∈ UX \{0}

}
> 1

j

}
, (125)

for all j ∈ N, where

UX = {U −X : U ∈ U}, for all X ∈ Rm×n. (126)
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By the same arguments as used in [20, Section VI], one can show that A is a measurable

set. Application of Fubini’s Theorem [35, Theorem 1.14] therefore yields

∫
P[(A,B,X) ∈ A] dλ(A,B) = E[λ{(A,B) : (A,B,X) ∈ A}]. (127)

As the right-hand side of (127) equals zero owing to Proposition 2.2, it follows that

P[(A,B,X) ∈ A] = 0, for Lebesgue a.a. (A,B). (128)

Since the complement of A, denoted by Ac, can be written as

Ac =
⋃
j∈N

Aj , (129)

application of [37, Lemma 3.4, Item (a)] together with (128) yields

lim
j→∞

P[(A,B,X) ∈ Aj ] = 1, for Lebesgue a.a. (A,B). (130)

Let C ⊆ Rm×k×Rn×k denote the set of matrices (A,B) for which (130) holds, and fix ε > 0

arbitrarily. Then, for every (A,B) ∈ C, there must exist a J(A,B) ∈ N such that

P[(A,B,X) ∈ AJ(A,B)] ≥ 1− ε. (131)

Next, for every (A,B) ∈ C, let

UA,B = {X ∈ U : (A,B,X) ∈ AJ(A,B)}. (132)

Since P[X ∈ U ] = 1 by assumption, (131) yields

P[X ∈ UA,B] ≥ 1− ε, for all (A,B) ∈ C. (133)
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Now, consider (A,B) ∈ C and fix U ,V ∈ UA,B with U ̸= V but arbitrary otherwise. It

follows that U −V ∈ UV \{0} and (A,B,V ) ∈ AJ(A,B), and the definition of AJ(A,B) (see

(125)) yields

∥U − V ∥
1
β

2 ≤ J(A,B)∥(aT
1 (U − V )b1 . . . aT

k (U − V )bk)
T∥2. (134)

By [20, Lemma 2], we can therefore conclude that, for every (A,B) ∈ C, the mapping

fA,B : UA,B → {(aT
1Xb1 . . . aT

kXbk)
T : X ∈ UA,B} (135)

X 7→ (aT
1Xb1 . . . aT

kXbk)
T (136)

is injective with β-Hölder continuous inverse f−1
A,B. Finally, for every (A,B) ∈ C, the map-

ping f−1
A,B can be extended to the desired β-Hölder continuous mapping g on Rk by [36,

Theorem 1, Item ii)].

8 Proof of Proposition 2.2

For every j ∈ N, let A(j) and B(j) be as in (71) and (72), respectively. By countable

subadditivity of Lebesgue measure, it suffices to show that

inf

{
∥(aT

1Xb1 . . . aT
kXbk)

T∥2
∥X∥1/β2

: X ∈ U\{0}

}
> 0, (137)

for Lebesgue a.a.
(
(a1 . . .ak), (b1 . . . bk)

)
∈ A(j)×B(j) and all j ∈ N. Owing to Lemma 8.1

below, (137) then holds, for all j ∈ N, with probability 1 if the deterministic matrices(
(a1 . . .ak), (b1 . . . bk)

)
∈ A(j) × B(j) are replaced by independent random matrices with

columns ai, i = 1, . . . , k, independent and uniformly distributed on Bm(0, j), and columns bi,

i = 1, . . . , k, independent and uniformly distributed on Bn(0, j). By countable subadditivity

of Lebesgue measure, this finally implies that (16) can be violated only on a set of Lebesgue

measure zero, which finalizes the proof.
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Lemma 8.1. Let s > 0 and take A = (a1 . . . ak) and B = (b1 . . . bk) to be independent

random matrices with columns ai, i = 1, . . . , k, independent and uniformly distributed on

Bm(0, s), and columns bi, i = 1, . . . , k, independent and uniformly distributed on Bn(0, s).

Consider a nonempty and bounded set U ⊆ Rm×n, and suppose that there exists a β ∈ (0, 1)

such that

dimB(U)
k

< 1− β. (138)

Then,

P

[
inf

{
∥(aT1Xb1 . . . aTkXbk)T∥2

∥X∥1/β2

: X ∈ U\{0}

}
> 0

]
= 1. (139)

Proof. Since U is bounded by assumption, there exists a K > 0 such that

σ1(X) ≤ K, for all X ∈ U . (140)

For every j ∈ N, set

Uj = U\Bm×n

(
0, 2−βj

)
. (141)

Then, (140) together with (141), upon using σ1(X) ≥ ∥X∥2/
√
rank(X), yields

2−βj

√
m

≤ σ1(X) ≤ K, for all X ∈ Uj and j ∈ N. (142)

By Lemma 8.2 below, it is sufficient to show that

P
[
∃J : ∥(aT1Xb1 . . . aTkXbk)

T∥2 ≥ 2−j , for all X ∈ Uj , j ≥ J
]
= 1. (143)
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This will be established by arguing as follows. Suppose we can prove that there exists a

J ∈ N such that

∞∑
j=J

P
[
∃X ∈ Uj : ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j
]
<∞. (144)

Then, the Borel-Cantelli Lemma [38, Theorem 2.3.1] implies

P
[
∃X ∈ Uj : ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j , for infinitely many j ∈ N
]
= 0, (145)

which, in turn, implies (143).

It remains to establish (144), which will be effected through a covering argument. For

every j ∈ N, consider the covering ball center Y
(j)
i ∈ Uj such that

Uj ⊆
NUj

(2−j)⋃
i=1

Bm×n

(
Y

(j)
i , 2−j

)
. (146)

A union bound argument then yields

P
[
∃X ∈ Uj : ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j
]

(147)

≤
NUj

(2−j)∑
i=1

P
[
∃X ∈ Bm×n

(
Y

(j)
i , 2−j

)
: ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j
]
. (148)

Next, choose J1 ∈ N such that

2−J1(1−β) ≤ s2

(1 + s2
√
k)
√
m
. (149)

This implies (1 + s2
√
k)2−j ≤ 2−βj

√
m
s2, for all j ≥ J1, and thus, by (142), (1 + s2

√
k)2−j ≤

σ1(X)s2, for all X ∈ Uj . Hence, for all j ≥ J1, we can bound each summand in (148)
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according to

P
[
∃X ∈ Bm×n

(
Y

(j)
i , 2−j

)
: ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j
]

(150)

≤ P

[∥∥∥∥∥(aT1Y (j)
i b1 . . . aTkY

(j)
i bk

)T∥∥∥∥∥
2

< (1 + s2
√
k)2−j

]
(151)

≤ (1 + s2
√
k)k2−jk 2

k(m+n)
2

σ1
(
Y

(j)
i

)k
s2k

(
1 + log

(
s2σ1

(
Y

(j)
i

)
(1 + s2

√
k)2−j

))k

(152)

≤ (s−2 +
√
k)km

k
2 2−jk(1−β)2

k(m+n)
2

(
1 + log

(
s2K

1 + s2
√
k

)
+ j log 2

)k

, (153)

where (151) is by (87)–(90) for εi = 2−j , in (152) we applied Lemma 6.2 with δ = (1 +

s2
√
k)2−j and X = Y

(j)
i , and in (153) we used (142). Inserting (150)–(153) into (147)–(148)

results in

P
[
∃X ∈ Uj : ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j
]

(154)

≤ CNU (2
−j)2−jk(1−β)(D + j log 2)k, for all j ≥ J1, (155)

with

C = (s−2 +
√
k)km

k
2 2

k(m+n)
2 (156)

and

D = 1 + log

(
s2K

1 + s2
√
k

)
. (157)

Next, let

d =
dimB(U) + k(1− β)

2
, (158)
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which implies dimB(U) < d < k(1− β) (see (15)). By (4) we have

dimB(U) = inf
ℓ∈N

sup
j≥ℓ

logNU
(
2−j
)

log
(
2j
) . (159)

Thus, as a consequence of d > dimB(U), there exists a J2 ∈ N such that

NU
(
2−j
)
≤ 2jd, for all j ≥ J2. (160)

Now set J = max(J1, J2). Then, we have

∞∑
j=J

P
[
∃X ∈ Uj : ∥(aT1Xb1 . . . aTkXbk)

T∥2 < 2−j
]

(161)

≤ C

∞∑
j=J

NU (2
−j)2−jk(1−β)(D + j log 2)k (162)

≤ C

∞∑
j=J

2−j(k(1−β)−d)(D + j log 2)k (163)

<∞, (164)

where in (162) we used (154)–(155), (163) is by (160), and (164) follows from d < k(1−β).

Lemma 8.2. Consider a nonempty and bounded set U ⊆ Rm×n \ {0} and let f : U → Rk.

Fix β ∈ (0, 1), and suppose that there exists a J ∈ N such that

∥f(X)∥2 ≥ 2−j , for all X ∈ U\Bm×n

(
0, 2−βj

)
and j ≥ J . (165)

Then, we have

inf

{
∥f(X)∥2
∥X∥1/β2

: X ∈ U

}
> 0. (166)

Proof. Follows from [20, Lemma 3] through vectorization.

40



A Proof of Lemma 3.1

Item i) follows from [21, Lemma III.1, Item i)] through vectorization.

In order to prove Item ii), we first note that the sets Ui participating in U are all s-

rectifiable by Item i). To see that a finite union of s-rectifiable sets is s-rectifiable, we first

prove the statement for two sets and then note that the generalization to finitely many sets

follows by induction. Let A and B be s-rectifiable. By the definition of rectifiability, there

exist compact sets C,D ⊆ Rs and Lipschitz mappings φ : C → Rm×n and ψ : D → Rm×n

such that A = φ(C) and B = ψ(D). As the sets C and D are compact, there exists a constant

R > 0 such that C ∪D ⊆ Bs(0, R). The set D+ {3R} is thus disjoint from C. We now define

the function

φ̃ : C ∪ (D + {3R}) → Rm×n

x 7→


φ(x), x ∈ C

ψ(x− 3R), x ∈ D + {3R}
.

The set C∪(D+{3R}) ⊆ Rs is compact as the union of compact sets and φ̃
(
C∪(D+{3R})

)
=

A∪B. It remains to establish that φ̃ is Lipschitz. Indeed, for vectors x,y ∈ C the Lipschitz

property follows from the Lipschitz property of φ. Analogously, for x,y ∈ D + {3R} the

Lipschitz property is inherited from that of ψ. For x ∈ C and y ∈ D + {3R}, we have that

∥x−y∥ ≥ R and ∥φ̃(x)− φ̃(y)∥ ≤ 2maxz∈C∪(D+{3R})∥φ̃(z)∥ =:M . Thus, ∥φ̃(x)− φ̃(y)∥ ≤
M
R ∥x − y∥ and we obtain Lipschitz continuity of φ̃ with Lipschitz constant given by the

maximum of M
R and the Lipschitz constants of φ and ψ.

To prove Item iii), let U ∈ Rm1×n1 be s-rectifiable and V ∈ Rm2×n2 t-rectifiable. By

the definition of rectifiability, there exist compact sets C ⊆ Rs and D ⊆ Rt and Lipschitz

mappings φ : C → Rm1×n1 and ψ : D → Rm2×n2 such that U = φ(C) and V = ψ(D). We can

therefore write U × V = (φ× ψ)(C × D) with C × D ⊆ Rs+t compact and φ× ψ : C × D →

Rm1×n1 × Rm2×n2 Lipschitz.

It remains to establish Item iv). Let K be a compact subset of an s-dimensional C1-

submanifold M ⊆ Rm×n. The statement is trivial if K = ∅. We hence assume that K is
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nonempty. By [30, Definition 5.3.1], we can write

M =
⋃

X∈M

φX(UX), (167)

where, for every X ∈ M, UX ⊆ Rs is open, and φX : UX → Rm×n is a one-to-one C1-map

satisfying X ∈ φX(UX) and φX(UX) = VX ∩M with VX ⊆ Rm×n open. Since there exists

a real analytic diffeomorphism between Rs and Bs(0, 1) [21, Lemma K.10], we can assume,

w.l.o.g., that the sets UX are all bounded. As K ⊆ M is compact by assumption, there must

exist a finite set {Xi : i = 1, . . . , N} ⊆ M such that

K ⊆
N⋃
i=1

φXi(UXi) (168)

and VXi
∩K ̸= ∅, for i = 1, . . . , N . With the set {Xi : i = 1, . . . , N} ⊆ M, we can now write

K =

N⋃
i=1

(φXi
(UXi

) ∩ K) (169)

=

N⋃
i=1

φi(Ui) (170)

=

N⋃
i=1

φi(U i), (171)

where in (170) we set φi = φXi
and Ui = UXi

∩ φ−1
i (K), and (171) is by K = K and the

continuity of φi. The claim now follows from Item ii) applied to 171.
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