
Automated Digitization of Paper ECG Records Using Convolutional Networks:
a Faster R-CNN and U-Net Approach

Haoliang Shang1, Clemens Hutter1, Yani Zhang1

1 Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland

Abstract

As part of the George B. Moody PhysioNet Challenge
2024, we developed a deep learning model based on de-
tection and segmentation to recover electrocardiogram
(ECG) time series from ECG record printouts. Our team,
mins-eth, designed a hybrid pipeline of convolutional neu-
ral networks (CNNs) that leverages the strength of Faster
Region-based Convolutional Neural Network (Faster R-
CNN) for precise detection of the signals and that of U-
Net for pixel-level accurate segmentation. Our model can
handle a variety of distortions present in scanned ECG
records, including rotation, cropping, creases, as well as
text artifacts, and efficiently identifies and extracts ECG
waveforms. For the digitization task, our model received
an SNR of 0.893 (ranked 6/16) on the hidden test set.

1. Introduction

ECG records are vital tools in the diagnosis and moni-
toring of cardiac conditions. Despite the increasing shift
toward electronic health records, a significant volume of
ECG data remains in paper form, particularly within older
records. Existing digitization methods often involve man-
ual input and lack the robustness to handle the wide vari-
ability in ECG paper formats and annotations. We partic-
ipate in the 2024 George B. Moody PhysioNet Challenge
[1–3], which invites teams to develop automated and open-
source 1 tools for digitizing ECG paper printouts.

2. Method

2.1. Assumptions

For this task, we make the following assumption: The
ECG scan adheres to the standard format with 12 short
leads and 1 long lead [4]. Deviations from this format may
result in inaccurate read-out results. This issue could be

1Code available at github.com/MINSMoody/ECG Paper
Digitization via Faster R-CNN and U-Net

addressed by incorporating an optical character recogni-
tion (OCR) module prior to the reading-out step.

2.2. Data generation and preprocessing

We are provided with ECG records in WFDB for-
mat [5, 6]. We perform two main steps to transform the
ECG signals into a 2-D image before feeding it into the
model.

Image generation and augmentation. Given digital
ECG signals, we generate synthetic ECG images using
ECG-Image-Kit [7]. Specifically, we introduce different
types of noise and distortions to mimic the artifacts in-
duced by the process of printing and scanning in the real
world. A summary of the randomly added noise can be
found in Table 1.

Category Details Probability
Paper
format

Paper margins: randomly
added to the top, bottom, left
or right.

0.2

Calibration pulse: ran-
domly added at the begin-
ning of each row.

0.7

Grids
arti-
facts

Intersection artifacts: grid
intersection points randomly
marked with dots.

0.3

Gridline Removal: vertical
and horizontal gridlines are
removed completely.

0.3

Noise Gaussian Noise: per-pixel
Gaussian noise added to
simulate natural noise.

0.2

Poisson noise (shot noise):
added to mimic the quality
loss during photo shooting.

0.3

Wrinkles
and
streaks

Paper wrinkles: randomly
added to the paper surface to
simulate wear and tear.

0.4

Table 1. List of artifacts.



Preprocessing. Following the CoCo-format [10], which
is the standard format for object detection and instance
segmentation tasks, we convert the ground truth masks,
i.e., which pixels in the generated images stand for signals,
for the ECG signals into Run Length Encoding (RLE).
Cropped single lead images and masks are randomly saved
for the training of the segmentation network. The trigger-
ing of the saving step follows a Bernoulli distribution with
a probability of 0.1, which ensures fair sampling across all
samples.

2.3. Model architecture

We break down the ECG digitization process into the
following steps: signal detection, signal pixel segmenta-
tion, and reading-out. There is a plethora of neural network
architectures for the detection and segmentation tasks in
the literature, see e.g. [11, 12]. We design our pipeline
based on Faster R-CNN [8] and U-Net [9] due to their su-
perior performance on the ECG digitization task, as de-
tailed in this subsection.

An overview of our pipeline is demonstrated in Figure 1.
After the input data is transformed into the standard format
as described in Section 2.2, it is passed to the detection
model based on Faster R-CNN [8], which crops out single
ECG leads. The cropped-out leads are then processed by
the segmentation model based on U-Net [9] to remove the
gridlines and any noise in the background. Since the de-
tection model is trained on the entire ECG scans and the
segmentation model is trained on single crop-outs, the two
models can be trained in parallel, enabling efficient and
specialized learning.

Faster R-CNN [8]. The Faster R-CNN model is a deep
learning architecture designed for object detection. In our
pipeline, Faster R-CNN is used to detect and localize re-
gions that contain all waveform signals within the entire
ECG scans. The model begins by extracting feature maps
from the input ECG scans using a convolutional backbone
network—ResNet101 [13] in our implementation. These
feature maps are then processed through a Region Proposal
Network (RPN) [8] that generates candidate regions likely
to contain the ECG signal. For each proposed region, the
network predicts the class label and refines the bounding
box coordinates, allowing Faster R-CNN to precisely iso-
late the ECG waveforms even in the presence of noise, dis-
tortions, and other extraneous markings on the paper scans.

U-Net [9]. The U-Net architecture is characterized
by its symmetric “U” shape, consisting of a contracting
path—the socalled encoder—and an expansive path—the
socalled decoder. This model is a convolutional neural
network specifically designed for pixel-level image seg-
mentation tasks and is particularly well-suited for tasks in-
volving ill-defined objects with little area and elongated
shape. In our pipeline, we employ U-Net to segment the

ECG waveforms from the crops generated by the Faster
R-CNN [8] model. The encoder compresses the input im-
age into a low-dimensional feature representation by suc-
cessively applying convolutional layers followed by max-
pooling operations. This process captures high-level fea-
tures and reduces spatial dimensions. The decoder then
upsamples these compressed features back to the origi-
nal resolution, using a series of up-convolutions and con-
catenations with corresponding layers from the encoder.
This skip connection mechanism allows the model to re-
tain fine-grained high-level spatial information that is cru-
cial for accurate segmentation.

For the ECG digitization task, by leveraging both the
contracting and expansive paths, U-Net effectively learns
to differentiate between the ECG waveform pixels and the
background, producing a precise binary mask that out-
lines the waveform. This segmentation step is essential for
generating a clean, noise-free digital representation of the
ECG signals, ready for the extraction of 1-D time series.

2.4. Reading-out and postprocessing

Sorting. Since the bounding box prediction result from
the detection model is random in relative positions, we sort
the bounding boxes into the standard format as mentioned
in Section 2.1. Algorithm 1 summarizes our sorting proce-
dure. A bounding box box is a list of the form [ℓ, t, r, b],
representing the left, top, right, and bottom coordinates of
the boundary. Each row Bi, for i ∈ 1, 2, 3, 4, is of shape
n×4, where n = 4 if the detection model successfully de-
tects all four leads in a row, otherwise n < 4. Algorithm 1
fills up potential missing bounding boxes by aligning with
other leads and outputs in total 13 bounding boxes.

Reading-Out. To transform 2-D masks generated by
the detection model into 1-D time series, we vertically scan
each column of the mask to search for the coordinates of
the signal pixels. Specifically, on a mask that represents the
ground truth, within each column, white pixels stand for
ECG signals while black pixels are the background. The
masks produced by our segmentation model contain noise
pixels aside from the ECG signals, see Figure. 2 for an
example. To mitigate the effect of such noise introduced in
the segmentation step, we scan through each column and
take the median of the coordinates of all white pixels to
compute the signal level in mV.

Figure 2. A segmentation example generated by our
model. Artifacts are marked in red.

Postprocessing. We apply a series of postprocess-
ing steps to remove noise introduced in the reading-out



Figure 1. Pipeline overview. Illustrations of Faster R-CNN and U-Net are taken from [8] and [9], respectively.

step. Specifically, we apply Cubic Spline interpolation of
NaN values [14] to correct missing data, Wavelet decom-
position [15] for frequency-based denoising, and resam-
pling [14] to ensure consistency with standard formats.

Algorithm 1 Bounding Boxes Sorting Algorithm
Input: lists of bounding boxes B1,B2,B3,B4

Step 1: Calculate the left and right boundaries
I ← indices of rows with 4 bounding boxes
ℓ← median{Bi[0, 0] : i ∈ I}
r ← median{Bi[2, 3] : i ∈ I}
m← r−ℓ

2 , mℓ← ℓ+m
2 , mr ← r+m

2
Step 2: Adjust the left and right boundaries of each
bounding box
for i ∈ I do

Bi[0, 0]← ℓ, Bi[0, 2]← mℓ, Bi[1, 0]← mℓ
Bi[1, 2]← m, Bi[2, 0]← m
Bi[2, 2]← mr, Bi[3, 0]← mr, Bi[3, 2]← r

for i ∈ {1, 2, 3} \ I do
for box ∈ Bi do

if box[0] < mℓ then
box[0, 2]← ℓ,mℓ

else if box[0] < m then
box[0, 2]← mℓ,m

else if box[0] < mr then
box[0, 2]← m,mr

else
box[0, 2]← mr, r

B4[0, 0]← min{B4[0, 0], ℓ}
B4[0, 2]← max{B4[0, 2], r}

Output: lists of adjusted bounding boxes B1, . . . ,B4

3. Results

We evaluate the model using 5-fold cross-validation on
the training set. Table 2 summarizes our final score and
ranking. Before calculating the SNR metric, the estimated
signal is shifted horizontally up to ±0.5 ms and verti-
cally up to ±1 mV to better match the ground-truth signal.
See [2] for a detailed description of the SNR metric as well
as the hidden validation and test set.

We test our method on a synthetic set of noise-free ECG
images generated using [7] without adding noise, as well
as a real-world set of ECG images generated by [7], printed
and scanned with a photoscanner. The results are summa-
rized in Table 3-4.

Task Score Rank
Digitization SNR: 0.893 6/16

Classification – –

Table 2. SNR and our ranking on the test set.

Training on
noise-free dataset

Validation on
held-out dataset Test

8.736± 1.272 7.927 –

Table 3. SNR on the synthetic noise-free training dataset
(1400 images) and held-out subset of the training set (100
images).



Training on
noise-

augmented dataset

Validation on
real-world

dataset
Test

1.762± 0.216 0.704 –

Table 4. SNR on the real-scanned, noise-free training
dataset (1400 images), validation on held-out real-scanned
set (50 images).

4. Discussion

The gap between SNR scores on the synthetic noise-
free dataset and the real-world dataset. As shown in Ta-
ble 3, our pipeline performs better on noise-free datasets,
demonstrating its effectiveness in handling high-quality
data. However, a significant drop in performance, as ob-
served in Table 4, reveals that our pipeline struggles to
generalize to unseen data and is sensitive to noise. This
is a direct consequence of U-Net’s instability, which leads
to overfitting on noise and training data [16].

Why not use the Mask R-CNN [17] for signal pixel seg-
mentation? Faster R-CNN [8], as a popular instance seg-
mentation model that extends Faster R-CNN [8] with an
additional segmentation branch, can predict mask labels at
the pixel level. However, after experimenting with vari-
ous hyperparameter settings, we reach the conclusion that
Mask R-CNN [17] does not segment signals well and has a
strong bias toward segmenting signals as a simple horizon-
tal line. We think the reason for this is that its ResNet [13]
backbone, with its pooling layers, leads to many detailed
low-level spatial features being permanently lost. Whereas
in U-Net [9], those features are retained through skip con-
nections between the encoder and decoder modules.

References

[1] Goldberger AL, et al. PhysioBank, PhysioToolkit, and Phy-
sioNet: Components of a new research resource for com-
plex physiologic signals. Circulation 2000;101(23):e215–
e220.

[2] Reyna MA, et al. Digitization and Classification of ECG
Images: The George B. Moody PhysioNet Challenge 2024.
Computing in Cardiology 2024;51:1–4.

[3] Reyna MA, et al. ECG-Image-Database: A dataset of ECG
images with real-world imaging and scanning artifacts; a
foundation for computerized ECG image digitization and
analysis, 2024.

[4] Hampton JR, Adlam D. The ECG Made Easy. 9th edition.
Philadelphia: Elsevier, 2019. Figure 2.22, p. 57.

[5] Wagner P, et al. PTB-XL, a large publicly available electro-
cardiography dataset. Scientific Data 2020;7:154.

[6] Strodthoff N, et al. PTB-XL+, a comprehensive electrocar-
diographic feature dataset. Scientific Data 2023;10:279.

[7] Shivashankara KK, et al. ECG-Image-Kit: a synthetic
image generation toolbox to facilitate deep learning-based

electrocardiogram digitization. Physiological Measurement
2024;45:055019.

[8] Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards
real-time object detection with region proposal networks.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 2017;39(6):1137–1149.

[9] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional
networks for biomedical image segmentation. In Medi-
cal Image Computing and Computer-Assisted Intervention
(MICCAI). Springer, 2015; 234–241.

[10] Lin TY, et al. Microsoft COCO: Common objects in con-
text. In European conference on computer vision. Springer,
2014; 740–755.

[11] Zou Z, Chen K, Shi Z, Guo Y, Ye J. Object detection
in 20 years: A survey. Proceedings of the IEEE 2023;
111(3):257–276.

[12] Trivedi A, Udagawa T, Merler M, Panda R,
El-Kurdi Y, Bhattacharjee B. Neural architec-
ture search for effective teacher-student knowl-
edge transfer in language models, 2023. URL
https://arxiv.org/abs/2303.09639.

[13] He K, Zhang X, Ren S, Sun J. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016; 770–
778.

[14] Virtanen P, et al. SciPy 1.0: Fundamental algorithms for sci-
entific computing in Python. Nature Methods 2020;17:261–
272.

[15] Lee GR, et al. PyWavelets: A python package for
wavelet analysis. Journal of Open Source Software 2019;
4(36):1237.

[16] Mosinska A, et al. Beyond the pixel-wise loss for topology-
aware delineation. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018; 3136–
3145.

[17] He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In
Proceedings of the IEEE International Conference on Com-
puter Vision. 2017; 2961–2969.

Address for correspondence:

Haoliang Shang
Rämistrasse 101, 8092 Zürich, Switzerland
hshang@ethz.ch


