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Abstract

Detection algorithms for multiple-input multiple-output(MIMO) wireless systems based on orthog-

onal frequency-division multiplexing (OFDM) typically require the computation of a QR decomposition

for each of the data-carrying OFDM tones. The resulting computational complexity will, in general, be

significant. Motivated by the fact that the channel matricesarising in MIMO-OFDM systems result from

oversampling of a polynomial matrix, we formulate interpolation-based QR decomposition algorithms.

An in-depth complexity analysis, based on a metric relevantfor very large scale integration (VLSI)

implementations, shows that the proposed algorithms, for asufficiently large number of data-carrying

tones and sufficiently small channel order, provably exhibit significantly smaller complexity than brute-

force per-tone QR decomposition.

Index Terms

Interpolation, polynomial matrices, multiple-input multiple-output (MIMO) systems, orthogonal fre-

quency-division multiplexing (OFDM), QR decomposition, successive cancelation, sphere decoding, very

large scale integration (VLSI).

I. INTRODUCTION

The use of orthogonal frequency-division multiplexing (OFDM) drastically reduces data detection com-

plexity in wideband multiple-input multiple-output (MIMO) wireless systems by decoupling a frequency-

selective fading MIMO channel into a set of flat-fading MIMO channels. Nevertheless, MIMO-OFDM

detectors still pose significant challenges in terms of computational complexity, as processing has to be

performed on a per-tone basis.
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Specifically, in the setting of coherent MIMO-OFDM detection, where the receiver is assumed to have

perfect channel knowledge, linear detectors [1] require matrix inversion, whereas successive cancelation

receivers [2] and sphere decoders [3], [4] require QR decomposition, in all cases on each of the data-

carrying OFDM tones. The corresponding computations, termed aspreprocessingin the following, have to

be performed at the rate of change of the channel which, depending on the propagation environment, is typ-

ically much lower than the rate at which the transmission of actual data symbols takes place. Nevertheless,

as payload data received during the preprocessing phase must be stored in a dedicated buffer, preprocessing

represents a major bottleneck in terms of the size of this buffer and the resulting detection latency [5].

In a very large scale integration (VLSI) implementation, the straightforward approach to reducing the

preprocessing latency is to employ parallel processing over multiple matrix inversion or QR decomposition

units, which, however, comes at the cost of increased silicon area. In [6], the problem of reducing

preprocessing complexity in linear MIMO-OFDM receivers isaddressed on an algorithmic level by

formulating efficient interpolation-based algorithms formatrix inversion that take the polynomial nature

of the MIMO channel transfer function explicitly into account. Specifically, the algorithms proposed in [6]

exploit the fact that the channel matrices arising in MIMO-OFDM systems result from oversampling of

the polynomial MIMO channel transfer function on the unit circle. The goal of the present paper is to

devise computationally efficient interpolation-based algorithms for QR decomposition in MIMO-OFDM

systems, using results on QR decomposition of Laurent polynomial (LP) matrices recently presented in [7].

Differently from the approach reported in [8], which approximates QR factors of a polynomial matrix (that,

as shown in [7], in general are neither LP nor rational matrices) by LP matrices, the algorithms presented

in this paper yieldexactQR factors. Although, throughout the paper, we focus on QR decomposition in

the context of coherent MIMO-OFDM detectors, our results also apply to transmit precoding schemes for

MIMO-OFDM (under the assumption of perfect channel knowledge at the transmitter) requiring per-tone

QR decomposition, both for point-to-point MIMO channels [9] and for multiantenna broadcast channels

[10]. In [11], it is shown that unitary precoding matrices for transmit beamforming (based on singular

value decomposition rather than QR decomposition) in MIMO-OFDM systems with limited feedback can

be computed efficiently through inexact interpolation under unitarity constraints.

The redundancy in the channel transfer function samples arising from the use of OFDM (both in the

single-antenna case and in the MIMO case) can be exploited inthe context of channel estimation, as

done, e.g., in [12], [13], [14] for single-antenna systems.In this paper, we show how this property can

be used to reduce the complexity of computing QR factors of MIMO-OFDM channel matrices. Finally,

we mention that follow-up work based on the conference version of this paper [15] was reported in [16].

The contributions of this paper can be summarized as follows. Based on the results in [7], we formulate

December 20, 2010 DRAFT



3

interpolation-based algorithms for QR decomposition in MIMO-OFDM systems. Using a computational

complexity metric relevant for VLSI implementations, we demonstrate that the proposed interpolation-

based algorithms can, depending on the system parameters, exhibit significantly smaller complexity than

brute-force per-tone QR decomposition. Furthermore, we present strategies for efficient interpolation

of LPs that take the specific structure of the problem at hand into account. Finally, we provide a

numerical analysis of the trade-off between the computational complexity of the proposed interpolation-

based QR decomposition algorithms and the performance of corresponding MIMO-OFDM detectors.

II. M ATHEMATICAL PRELIMINARIES

A. Notation

C
P×M denotes the set of complex-valuedP ×M matrices.U , {s ∈ C : |s| = 1} indicates the unit

circle. ∅ is the empty set.|A| stands for the cardinality of the setA. mod is the modulo operator. All

logarithms are to the base 2.E[·] denotes the expectation operator.CN (0, σ2) stands for the circularly-

symmetric complex Gaussian distribution with varianceσ2. Throughout the paper, we use the following

conventions. First, ifk2 < k1,
∑k2

k=k1
αk = 0, regardless ofαk. Second, sequences of integers of the

form k1, k1 + ∆, . . . , k2, with ∆ > 0, simplify to the sequencek1, k2 if k2 = k1 + ∆, to the single

valuek1 if k2 = k1, and to the empty sequence ifk2 < k1.

A∗, AT, AH, A†, andrank(A) denote the entrywise conjugate, the transpose, the conjugate transpose,

the pseudoinverse, and the rank, respectively, of the matrix A. [A]p,m indicates the entry in thepth row

andmth column ofA. Ap1,p2 andAm1,m2
stand for the submatrix given by the rowsp1, p1 + 1, . . . , p2

of A and the submatrix given by the columnsm1,m1 + 1, . . . ,m2 of A, respectively. Furthermore, we

set Ap1,p2
m1,m2 , (Am1,m2

)p1,p2 and AH
m1,m2

, (Am1,m2
)H. diag(a1, a2, . . . , aM ) indicates theM ×M

diagonal matrix with the scalaram as itsmth main diagonal element.IM is theM ×M identity matrix.

0 denotes the all-zeros matrix of appropriate size. Column vectors and row vectors are represented by

lower-case bold symbols and by lower-case bold underlined symbols, respectively. Finally, orthogonality

and norm of complex-valued column vectorsa1,a2 are induced by the inner productaH
1 a2.

B. QR Decomposition

We consider a matrixA ∈ C
P×M with P ≥ M . In this section, mostly taken from [7], we briefly

review some basics on QR decomposition along with related results that will be needed later in the paper.

Definition 1. We call any factorizationA = QR, for which the matricesQ ∈ C
P×M andR ∈ C

M×M

satisfy the following conditions, aQR decompositionof A with QR factorsQ andR:
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1) the nonzero columns ofQ are orthonormal

2) R is upper triangular with real-valued nonnegative entries on its main diagonal

3) R = QHA

Practical algorithms for QR decomposition are either basedon Gram-Schmidt (GS) orthonormalization

or on unitary transformations (UT) [17].

Definition 2. The ordered column rankof A is the number

K ,











0, rank(A1,1) = 0

max{k : rank(A1,k) = k}, else.

Proposition 3. If A has ordered column rankK > 0, thenQ1,K and R1,K are unique and satisfy

1) QH
1,KQ1,K = IK

2) [R1,K ]k,k = [R]k,k > 0, k = 1, 2, . . . ,K.

We note that for full-rankA, we haveK = M . In this case, the uniqueness ofQ andR implies that

A = QR can be calledthe QR decomposition ofA with the QR factorsQ andR. For rank(A) < M ,

different QR decomposition algorithms will in general produce different QR factors. Throughout the

paper, wheneverA is not guaranteed to have full rank, we simply speak ofa QR decomposition ofA

with QR factorsQ andR.

Proposition 4. Let A = QR be a QR decomposition ofA. Then, forM > 1 and for a givenk ∈
{2, 3, . . . ,M}, Ak,M −Q1,k−1R

1,k−1
k,M = Qk,MR

k,M
k,M is a QR decomposition ofAk,M −Q1,k−1R

1,k−1
k,M .

Definition 5. Theregularized QR decompositionof A with the real-valuedregularization parameterα >

0, is the unique factorizationA = QR, where theregularized QR factorsQ ∈ C
P×M andR ∈ C

M×M

are obtained as follows:̄A = Q̄R is the unique QR decomposition of the full-rank(P + M) × M

augmented matrix̄A , [AT αIM ]T, andQ , Q̄1,P.

C. Laurent Polynomials and Interpolation

In the following, we review basic results on the interpolation of LPs and establish the corresponding

notation. Various strategies for computationally efficient interpolation of LPs making use of the specific

structural properties of the problem at hand are presented in Section VIII.

Definition 6. Given a matrix-valued functionA : U → C
P×M and integersV1, V2 ≥ 0, the notation

A(s) ∼ (V1, V2) indicates that there exist coefficient matricesAv ∈ C
P×M, v = −V1,−V1 + 1, . . . , V2,
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such that

A(s) =
V2
∑

v=−V1

Avs
−v, s ∈ U . (1)

If A(s) ∼ (V1, V2), thenA(s) is a Laurent polynomial(LP) matrix with maximum degreeV1 + V2.

In the remainder of this section, we consider the LPa(s) ∼ (V1, V2) with maximum degreeV , V1+V2.

The following results can be directly extended to the interpolation of LP matrices through entrywise

application. Borrowing terminology from signal analysis,we call the value ofa(s) at a given point

s0 ∈ U the samplea(s0).

Definition 7. Interpolationof the LPa(s) ∼ (V1, V2) from the setB = {b0, b1, . . . , bB−1} ⊂ U , contain-

ing B distinctbase points, to the setT = {t0, t1, . . . , tT−1} ⊂ U , containingT distincttarget points,is the

process of obtaining the samplesa(t0), a(t1), . . . , a(tT−1) from the samplesa(b0), a(b1), . . . , a(bB−1),

with knowledge ofV1 andV2, but without explicit knowledge of the coefficientsa−V1
, a−V1+1, . . . , aV2

that determinea(s) according to (1).

In the following, we assume thatB ≥ V + 1. By defining the vectorsa , [a−V1
a−V1+1 · · · aV2

]T,

aB , [a(b0) a(b1) · · · a(bB−1)]
T, andaT , [a(t0) a(t1) · · · a(tT−1)]

T, we note thataB = Ba, with

theB× (V +1) base point matrix[B]i,v = bV1−v+1
i−1 (i = 1, 2, . . . , B, v = 1, 2, . . . , V +1) andaT = Ta,

with the T × (V + 1) target point matrix[T]i,v = tV1−v+1
i−1 (i = 1, 2, . . . , T , v = 1, 2, . . . , V + 1). Now,

B can be written asB = DBVB, whereDB , diag(bV1

0 , bV1

1 , . . . , bV1

B−1) and VB is the B × (V + 1)

Vandermonde matrix[VB]i,v = b−v+1
i−1 (i = 1, 2, . . . , B, v = 1, 2, . . . , V + 1). Since the base points

b0, b1, . . . , bB−1 are distinct,VB has full rank [18]. Hence,rank(VB) = V +1, which, together with the

fact thatDB is nonsingular, implies thatrank(B) = V +1. Therefore, the coefficient vectora is uniquely

determined by theB samples ofa(s) at the base pointsb0, b1, . . . , bB−1 according toa = B†aB, and

interpolation ofa(s) from B to T can be performed by computing

aT = TB†aB. (2)

In the remainder of the paper, we call theT ×B matrix TB† the interpolation matrix.

For later use, we briefly comment on interpolation from noisysamples at the base points. Specifically,

for aB subject to additive noisewB, there exists, in general, no LP̃a(s) ∼ (V1, V2) such that the entries of

the vectoraB+wB can be seen as the samples ofã(s) at the base pointsB. However, as is easily verified,

interpolation according to (2), withaB replaced byaB +wB, forces the resulting vectorTB†(aB +wB)

to consist of samples of an LP̂a(s) ∼ (V1, V2) at the target pointsT .
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We conclude this section by noting that in the special caseV1 = V2, we haveB = B∗E andT = T∗E,

where the(V + 1) × (V + 1) matrix E is obtained by flippingIV +1 upside down. Since the operation

of taking the pseudoinverse commutes with entrywise conjugation, it follows thatB† = E(B†)∗ and, as

a consequence ofE2 = IV +1, we obtainTB† = (TB†)∗, i.e., the interpolation matrix is real-valued.

III. MIMO-OFDM AND PROBLEM STATEMENT

A. System Model

We consider a MIMO system [1] withMR receive antennas and letMT denote the number of spatial

data streams transmitted. In the setting of spatial multiplexing [1], MT equals the number of physical

transmit antennas. We make the conceptual assumptionMR ≥ MT throughout the paper, as anMT -

dimensional signal can not, in general, be recovered from anobservation of lower dimensionality.

The matrix-valued impulse response of the frequency-selective MIMO channel is given by the taps

Hl ∈ C
MR×MT (l = 0, 1, . . . , L) with the corresponding matrix-valued transfer function

H
(

ej2πθ
)

=
L

∑

l=0

Hle
−j2πlθ, 0 ≤ θ < 1

which satisfiesH(s) ∼ (0, L). Under OFDM signaling, the use of a cyclic prefix of lengthLCP ≥ L

essentially turns the action of the channel (in the single-input single-output case) into the multiplication

by a circulant matrix, which is diagonalized by the discreteFourier transform. The effective input-output

relation in a MIMO-OFDM system withLCP≥ L andN OFDM tones is therefore given by [19]

dn = H
(

sn

)

cn + wn, n = 0, 1, . . . , N − 1

with the tone indexn, the transmit signal vectorcn , [cn,1 cn,2 · · · cn,MT
]T, the receive signal vector

dn , [dn,1 dn,2 · · · dn,MR
]T, the additive noise vectorwn, and sn , ej2πn/N. Here,cn,m stands for

the complex-valued data symbol, taken from a finite constellation O, transmitted by themth antenna

on thenth tone anddn,m is the signal observed at themth receive antenna on thenth tone. Forn =

0, 1, . . . , N − 1, we assume thatcn contains statistically independent entries and satisfiesE[cn] = 0 and

E[cH
n cn] = 1. Again for n = 0, 1, . . . , N − 1, we assume thatwn is statistically independent ofcn and

contains entries that are independent and identically distributed (i.i.d.) asCN (0, σ2
w), whereσ2

w denotes

the noise variance and is assumed to be known at the receiver.

In practice,N is typically chosen to be a power of two in order to allow for efficient OFDM processing

based on the Fast Fourier Transform (FFT). Moreover, a smallsubset of theN tones is typically set

aside for pilot symbols and virtual tones at the frequency band edges, which help to reduce out-of-band

interference and relax the pulse-shaping filter requirements. We collect the indices corresponding to theD

tones carrying payload data into the setD ⊆ {0, 1, . . . , N −1}. Typical OFDM systems haveD ≥ 3LCP.
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B. QR Decomposition in MIMO-OFDM Detectors

Widely used algorithms for coherent detection in MIMO-OFDMsystems include successive cance-

lation (SC) detectors [1], both zero-forcing (ZF) and minimum mean-square error (MMSE) [2], [20],

as well as sphere decoders, both in the original formulation[3], [4] requiring ZF-based preprocessing,

and in the MMSE-based form proposed in [21]. These detectionalgorithms require QR decomposition

in the preprocessing step, or, more specifically, computation of matricesQ(sn) and R(sn), n ∈ D,

defined as follows. In the ZF case,Q(sn) andR(sn) are QR factors ofH(sn), whereas in the MMSE

case,Q(sn)R(sn) is theMMSE-QR decompositionof H(sn), defined as the special case of regularized

QR decomposition ofH(sn) obtained by choosing the regularization parameter asα =
√

MT σw. Both for

ZF-based and MMSE-based preprocessing, SC detectors essentially solve the linear system of equations

QH(sn)dn = R(sn)ĉn through back-substitution (with rounding of the intermediate results to elements

of O [1]) to obtain ĉn ∈ OMT, whereas sphere decoders exploit the upper triangularity of R(sn) to find

the vector̂cn ∈ OMT that minimizes‖QH(sn)dn −R(sn)ĉn‖2 through an efficient tree search [4].

C. Problem Statement

We assume that the MIMO-OFDM receiver has perfect knowledge(obtained, e.g., through channel

estimation) of the samplesH(sn) for n ∈ E ⊆ {0, 1, . . . , N−1}, with |E| ≥ L+1, from whichH(sn) can

be obtained at any data-carrying tonen ∈ D by interpolatingH(s) ∼ (0, L). In the special caseD ⊆ E ,

interpolation ofH(s) is not necessary. We next formulate the problem statement byfocusing on ZF-based

detectors, requiring QR decomposition of the MIMO-OFDM channel matricesH(sn). The problem state-

ment for the MMSE case is analogous with QR decomposition replaced by MMSE-QR decomposition.

The MIMO-OFDM receiver needs to compute QR factorsQ(sn) andR(sn) of H(sn) for all data-

carrying tonesn ∈ D. A straightforward approach to solving this problem consists of first interpolat-

ing H(s) to obtainH(sn) at the tonesn ∈ D and then performing QR decomposition on a per-tone

basis. This method will henceforth be calledbrute-force per-tone QR decomposition. The interpolation-

based QR decomposition algorithms presented in this paper are motivated by the following observations.

First, performing QR decomposition on anM ×M matrix requiresO(M3) arithmetic operations [17],

whereas the number of arithmetic operations involved in computing one sample of anM ×M LP matrix

by interpolation is proportional to the number of matrix entries M2, as interpolation of an LP matrix is

performed entrywise. This comparison suggests that we may obtain fundamental savings in computational

complexity by replacing QR decomposition by interpolation. Second, consider a flat-fading channel, so

that L = 0 and henceH(sn) = H0 for all n = 0, 1, . . . , N − 1. In this case, a single QR decomposition

H0 = QR yields QR factors ofH(sn) for all data-carrying tonesn ∈ D. A question that now arises
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naturally is whether forL > 0 QR factorsQ(sn) andR(sn), n ∈ D, can be obtained from a smaller set

of QR factors through interpolation. We will see that the answer is in the affirmative and will, moreover,

demonstrate that interpolation-based QR decomposition algorithms can yield significant computational

complexity savings over brute-force per-tone QR decomposition for a wide range of values of the

parametersMT , MR, L, N , and D, which will be referred to asthe system parametersthroughout

the paper. The key to formulating interpolation-based QR decomposition algorithms that realize these

complexity savings are results on QR decomposition of LP matrices recently reported in [7] and briefly

reviewed in the next section.

IV. QR DECOMPOSITION OFLP MATRICES

We consider aP×M LP matrixA(s) ∼ (V1, V2), s ∈ U , with P ≥M , and QR factorsQ(s) andR(s)

of A(s). In [7], it is shown that althoughQ(s) andR(s) are, in general, not LP matrices, there exists

a mappingM that transformsQ(s) and R(s) into corresponding LP matrices̃Q(s) and R̃(s). This

mapping constitutes the basis for the formulation of interpolation-based QR decomposition algorithms

for MIMO-OFDM systems.

We review the mappingM by considering QR factors ofA(s0) for a givens0 ∈ U . In order to keep

the notation compact, we omit the dependence of all involvedquantities ons0. In the following, qk

andrk denote thekth column ofQ and thekth row of R, respectively (k = 1, 2, . . . ,M ). We start by

defining the auxiliary variables∆k as

∆k , ∆k−1[R]2k,k, k = 1, 2, . . . ,M (3)

with ∆0 , 1. Next, we introduce the vectors

q̃k , ∆k−1 [R]k,k qk, k = 1, 2, . . . ,M (4)

r̃k , ∆k−1 [R]k,k rk, k = 1, 2, . . . ,M (5)

and define the mappingM : (Q,R) 7→ (Q̃, R̃) throughQ̃ , [q̃1 q̃2 · · · q̃M ] andR̃ , [r̃T
1 r̃T

2 · · · r̃T
M ]T.

In the following, we denote the ordered column rank ofA by K. For K > 0 andk = 1, 2, . . . ,K, we

can computeqk andrk from q̃k and r̃k, respectively, according to

qk = (∆k−1 [R]k,k)
−1 q̃k (6)

rk = (∆k−1 [R]k,k)
−1 r̃k (7)

where∆k−1 [R]k,k is obtained from the entries on the main diagonal ofR̃ as

∆k−1 [R]k,k =











√

[R̃]k,k, k = 1
√

[R̃]k−1,k−1[R̃]k,k, k = 2, 3, . . . ,K.
(8)

December 20, 2010 DRAFT



9

The inverse mappingM−1 : (Q̃, R̃) 7→ (Q,R) corresponds to the following procedure:1

1) If K > 0, for k = 1, 2, . . . ,K, compute the scaling factor(∆k−1 [R]k,k)
−1 using (8) and scalẽqk

and r̃T
k according to (6) and (7), respectively.

2) If 0 < K < M , computeQK+1,M andR
K+1,M
K+1,M by performing QR decomposition onAK+1,M −

Q1,KR
1,K
K+1,M , and constructRK+1,M = [0 R

K+1,M
K+1,M

].

3) If K = 0, computeQ andR by performing QR decomposition onA.

We note that the nonuniqueness of QR decomposition in the caseK < M has the following consequence.

Given QR factorsQ1 andR1 of A, the application of the mappingM to (Q1,R1) followed by application

of the inverse mappingM−1 yields matricesQ2 andR2 that may not be equal toQ1 andR1, respectively.

However,Q2 andR2 will be QR factors ofA in the sense of Definition 1.

The following theorem, proven in [7], paves the way for the formulation of interpolation-based QR de-

composition algorithms.

Theorem 8. GivenA : U → C
P×M with P ≥ M , such thatA(s) ∼ (V1, V2) with maximum degree

V = V1 +V2. The functions∆k(s), q̃k(s), and r̃k(s), obtained by applying the mappingM as in (3)–(5)

to QR factorsQ(s) and R(s) of A(s) for all s ∈ U , satisfy the following properties:

1) ∆k(s) ∼ (kV, kV )

2) q̃k(s) ∼ ((k − 1)V + V1, (k − 1)V + V2)

3) r̃k(s) ∼ (kV, kV ).

We emphasize that Theorem 8 applies to any QR factors according to Definition 1 and is therefore not

affected by the nonuniqueness of QR decomposition arising in the rank-deficient case. Finally, we mention

that Theorem 8, with the definitions ofM andM−1 given above, carries over, in a straightforward fashion,

to the case of regularized QR decomposition.

V. A PPLICATION TO MIMO-OFDM

We are now ready to show how the results on QR decomposition ofLP matrices reviewed in the

previous section lead to algorithms that exploit the polynomial nature of the MIMO channel transfer

function H(s) ∼ (0, L) to perform efficient interpolation-based computation of QRfactors ofH(sn),

for all data-carrying tonesn ∈ D, given knowledge ofH(sn) at the tonesn ∈ E . We note that the

algorithms presented in this section are based on generic interpolation according to Definition 7. Specific

interpolation methods will be discussed in Section VIII.

1Note that forK < M , the inverse mappingM−1 requires explicit knowledge ofAK+1,M .
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In the algorithms presented below, interpolation involvesbase points and target points onU that

correspond to OFDM tones indexed by integers taken from the set {0, 1, . . . , N − 1}. For a given set

X ⊆ {0, 1, . . . , N − 1} of OFDM tones, we defineS(X ) , {sn : n ∈ X} to denote the set of

corresponding points onU . With this definition in place, we start by summarizing the brute-force approach

described in Section III-C.

Algorithm I: Brute-force per-tone QR decomposition

1) InterpolateH(s) from S(E) to S(D).

2) For eachn ∈ D, perform QR decomposition onH(sn) to obtainQ(sn) andR(sn).

It is obvious that for largeD = |D|, performing QR decomposition on a per-tone basis will result in high

computational complexity. However, in the practically relevant caseL≪ D the OFDM system effectively

highly oversamples the MIMO channel transfer function, so that H(sn) changes slowly acrossn. This

observation, combined with the results of [7] summarized inSection IV, constitutes the basis for a new

class of algorithms that perform QR decomposition at a smallnumber of tones and obtain the remaining

QR factors through interpolation. More specifically, the basic idea of interpolation-based QR decompo-

sition is as follows. By applying Theorem 8 to theMR ×MT LP matrix H(s) ∼ (0, L), we obtain

q̃k(s) ∼ ((k − 1)L, kL) and r̃k(s) ∼ (kL, kL) for k = 1, 2, . . . ,MT . In order to simplify the exposition,

in the remainder of the paper we considerq̃k(s) as satisfying̃qk(s) ∼ (kL, kL). The resulting statements

q̃k(s), r̃k(s) ∼ (kL, kL) , k = 1, 2, . . . ,MT (9)

imply that both q̃k(s) and r̃k(s) can be interpolated from at least2kL + 1 base points, and that,

as a consequence ofV1 = V2 = kL, the corresponding interpolation matrices are real-valued. For

k = 1, 2, . . . ,MT , the interpolation-based algorithms to be presented compute q̃k(sn) andr̃k(sn), through

QR decomposition followed by application of the mappingM, at a subset of OFDM tones of cardinality

at least2kL+1, then interpolatẽqk(s) andr̃k(s) to obtainq̃k(sn) andr̃k(sn) at the remaining tones, and

finally apply the inverse mappingM−1 at these tones. In the following, the setsIk ⊆ {0, 1, . . . , N − 1},
with Ik−1 ⊆ Ik andBk , |Ik| ≥ 2kL + 1 (k = 1, 2, . . . ,MT ), contain the indices corresponding to the

OFDM tones chosen as base points. For completeness, we defineI0 , ∅. Specific choices of the setsIk
will be discussed in detail in Section VIII.

We start with a conceptually simple algorithm for interpolation-based QR decomposition, derived

from the observation that theMT statements in (9) can be unified into the single statementQ̃(s), R̃(s) ∼
(MT L,MT L). This implies that we can interpolatẽQ(s) and R̃(s) from a single set of base points of

cardinalityBMT
. The corresponding algorithm can be formulated as follows:
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Algorithm II: Single interpolation step

1) InterpolateH(s) from S(E) to S(IMT
).

2) For eachn ∈ IMT
, perform QR decomposition onH(sn) to obtainQ(sn) andR(sn).

3) For eachn ∈ IMT
, applyM : (Q(sn),R(sn)) 7→ (Q̃(sn), R̃(sn)).

4) InterpolateQ̃(s) andR̃(s) from S(IMT
) to S(D\IMT

).

5) For eachn ∈ D\IMT
, applyM−1 : (Q̃(sn), R̃(sn)) 7→ (Q(sn),R(sn)).

This formulation of Algorithm II assumes thatH(sn) has full rank for all n ∈ D\IMT
, which

allows to perform all inverse mappingsM−1 in Step 5 using (6)–(8) only. If, however, for a given

n ∈ D\IMT
, H(sn) is rank-deficient with ordered column rankK < MT , we haveQ̃K+1,MT

(sn) = 0

and R̃K+1,MT (sn) = 0. Hence, according to the definition ofM−1 in Section IV,QK+1,MT
(sn) and

RK+1,MT (sn) must be computed through QR decomposition ofHK+1,MT
(sn)−Q1,K(sn)R1,K

K+1,MT
(sn)

for K > 0 or of H(sn) for K = 0. This, in turn, requiresHK+1,MT
(sn) to be obtained by interpo-

lating HK+1,MT
(s) from S(E) to the single target pointsn in an additional step. For simplicity of

exposition, in the remainder of the paper we will assume thatH(sn) has full rank for alln ∈ D.

Departing from Algorithm II, which interpolates̃qk(s) and r̃k(s) from BMT
base points, we next

present a more sophisticated algorithm that involves interpolation of q̃k(s) and r̃k(s) from Bk ≤ BMT

base points (k = 1, 2, . . . ,MT ), in agreement with (9). The resulting Algorithm III consists of MT

iterations. In the first iteration, the tonesn ∈ I1 are considered. At each of these tones, QR decomposition

is performed onH(sn), resulting inQ(sn) andR(sn), which are then mapped to(Q̃(sn), R̃(sn)) by

applyingM. Next, q̃1(s) and r̃1(s) are interpolated from the tonesn ∈ I1 to the remaining tones

n ∈ D\I1. In thekth iteration (k = 2, 3, . . . ,MT ), the tonesn ∈ Ik\Ik−1 are considered. At each of these

tones,Q1,k−1(sn) andR1,k−1(sn) are obtained2 by applyingM−1 to (Q̃1,k−1(sn), R̃1,k−1(sn)), already

known from the previous iterations, whereas the submatrices Qk,MT
(sn) andR

k,MT

k,MT
(sn) are obtained by

performing QR decomposition on the matrixHk,MT
(sn) −Q1,k−1(sn)R1,k−1

k,MT
(sn), in accordance with

Proposition 4, andRk,MT (sn) is given, fork > 1, by [0 R
k,MT

k,MT
(sn) ]. Next, the submatrices̃Qk,MT

(sn)

and R̃k,MT (sn) are computed by applyingM to (Qk,MT
(sn),Rk,MT (sn)). Since the samples̃qk(sn)

and r̃k(sn) are now known at all tonesn ∈ Ik, q̃k(s) and r̃k(s) can be interpolated from the tones

n ∈ Ik to the remaining tonesn ∈ D\Ik, thereby completing thekth iteration. AfterMT iterations, we

know Q̃(sn) andR̃(sn) at all tonesn ∈ D, as well asQ(sn) andR(sn) at the tonesn ∈ IMT
. The last

step consists of applyingM−1 to (Q̃(sn), R̃(sn)) to obtainQ(sn) and R(sn) at the remaining tones

n ∈ D\IMT
. The algorithm is formulated as follows:

2The mappingM and its inverseM−1 are defined on submatrices ofQ(sn) andR(sn) according to (3)–(8).
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Algorithm III: Multiple interpolation steps

1) Setk ← 1.

2) InterpolateHk,MT
(s) from S(E) to S(Ik\Ik−1).

3) If k = 1, go to Step 5. Otherwise, for eachn ∈ Ik\Ik−1, apply M−1 :

(Q̃1,k−1(sn), R̃1,k−1(sn)) 7→ (Q1,k−1(sn),R1,k−1(sn)).

4) For eachn ∈ Ik\Ik−1, overwriteHk,MT
(sn) by Hk,MT

(sn)−Q1,k−1(sn)R1,k−1
k,MT

(sn).

5) For eachn ∈ Ik\Ik−1, perform QR decomposition onHk,MT
(sn) to obtainQk,MT

(sn) and

R
k,MT

k,MT
(sn), and, if k > 1, constructRk,MT (sn) = [0 R

k,MT

k,MT
(sn) ].

6) For eachn ∈ Ik\Ik−1, applyM : (Qk,MT
(sn),Rk,MT (sn)) 7→ (Q̃k,MT

(sn), R̃k,MT (sn)).

7) Interpolateq̃k(s) and r̃k(s) from S(Ik) to S(D\Ik).
8) If k = MT , proceed to the next step. Otherwise, setk ← k + 1 and go back to Step 2.

9) For eachn ∈ D\IMT
, applyM−1 : (Q̃(sn), R̃(sn)) 7→ (Q(sn),R(sn)).

In comparison to Algorithm II, Algorithm III performs QR decompositions on increasingly smaller

matrices. The corresponding computational complexity savings are, however, traded against an increase

in interpolation effort and the computational overhead associated with Step 4, which will be referred to

as thereduction stepin what follows. Moreover, the complexity of applyingM andM−1 differs for the

two algorithms. A detailed complexity analysis provided inthe next section will show that, depending

on the system parameters, Algorithm III can exhibit smallercomplexity than Algorithm II.

So far, we assumed that the matricesH(sn), n ∈ E , are known perfectly. Under this assumption,

Algorithms I–III produce the same result, namely QR factorsQ(sn) and R(sn) of H(sn), n ∈ D.

If the matricesH(sn), n ∈ E , are perturbed by additive noise due to, e.g., channel estimation errors,

interpolation ofH(s) (as performed in Step 1 of Algorithms I and II, or in Step 2 of Algorithm III)

will produce samples of an LP matrix̂H(s) ∼ (0, L) that is not equal toH(s) but is the same in all

three algorithms (cf. the discussion at the end of Section II-C in the context of a generic LPa(s)).

Consequently, Algorithms I–III will yield QR factors of thematricesĤ(sn), n ∈ D, and are hence all

equally affected by channel estimation errors. The resultspresented in the remainder of the paper are

based on the assumption of perfect knowledge ofH(sn), n ∈ E .

We note that the conditions|E| ≥ L + 1 and Bk ≥ 2kL + 1, k = 1, 2, . . . ,MT , guarantee that all

instances of interpolation in Algorithms I–III can be carried out exactly. In Section IX-A, we will argue

that savings in the complexity of the interpolation-based algorithms can be obtained by performing,

instead, inexact interpolation from a small number of base points. Although this leads to errors in the

algorithm outputQ(sn) andR(sn), n ∈ D, the numerical results in Section IX-A demonstrate that large

complexity savings can be obtained without significantly degrading MIMO-OFDM detection performance.
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Throughout Sections VI–VIII, we assume exact interpolation unless specified otherwise.

VI. COMPLEXITY ANALYSIS

We are next interested in assessing under which circumstances the interpolation-based Algorithms II

and III offer computational complexity savings over the brute-force approach in Algorithm I. To this

end, we propose a simple computational complexity metric, representative of VLSI circuit complexity

as quantified by the product of chip area and processing delay[22]. We note that other important

aspects of VLSI design, including, e.g., wordwidth requirements, memory access strategies, and datapath

architecture, are not accounted for in our analysis. Nevertheless, the proposed metric is indicative of

the complexity of Algorithms I–III and allows to quantify the impact of the system parameters on the

potential savings of interpolation-based QR decomposition over brute-force per-tone QR decomposition. In

the remainder of the paper, unless explicitly stated otherwise, the termcomplexityrefers to computational

complexity according to the metric defined in Section VI-A below.

A. Complexity Metric

In the VLSI implementation of a given algorithm, a wide rangeof trade-offs between silicon areaA

and processing delayτ can, in general, be realized [22]. Parallel processing reducesτ at the expense of

a largerA, whereas resource sharing reducesA at the expense of a largerτ . However, the corresponding

circuit transformations typically do not affect the area-delay productAτ significantly. For this reason,

the area-delay product is considered a relevant indicator of algorithm complexity [22]. In the definition

of the specific complexity metric that will be used subsequently, we only take into account the arithmetic

operations with a significant impact onAτ . More specifically, we divide the operations underlying the

algorithms under consideration into three classes, namelyi) multiplications, ii) divisions and square

roots, and iii) additions and subtractions. Class iii) operations will not be counted as they typically have

a significantly lower VLSI circuit complexity than Class i) and Class ii) operations.

In all algorithms presented in this paper, the number of Class i) operations is significantly larger

than the number of Class ii) operations.3 Moreover, the data dependences in these algorithms allow

Class i) operations and Class ii) operations to be performedin parallel. In an architecture where Class i)

operations are carried out sequentially, a single Class ii)operation can be distributed over the time required

by multiple Class i) operations, as demonstrated in [23]. Therefore, the arithmetical unit in charge of the

3We assume that division of anM -dimensional vectora by a scalarα, such as the divisions in (6) or (7), is implemented by

first computing the single divisionβ , 1/α and then multiplying theM entries ofa by β, at the cost of one Class ii) operation

andM Class i) operations, respectively.
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Class ii) operation can be designed to consume a significantly smaller silicon area than the multiplier

carrying out the Class i) operations. Based on this observation, we conclude that the impact of Class ii)

operation on the overall complexity can be neglected.

Within Class i), we distinguish betweenfull multiplications (i.e., multiplications of two variable

operands) andconstant multiplications(i.e., multiplications of a variable operand by a constant operand4).

We define the cost of a full multiplication as the unit of computational complexity. We do not distinguish

between real-valued full multiplications and complex-valued full multiplications, as we assume that

both are performed by multipliers designed to process two variable complex-valued operands. The fact,

discussed in detail in Section VIII-A, that a constant multiplication can be implemented in VLSI at

significantly smaller cost than a full multiplication, willbe accounted for through a weighting factor

smaller than one.

B. Per-Tone Complexity of Individual Computational Tasks

In order to simplify the notation, in the remainder of this section we drop the dependence of all

quantities onsn. We furthermore introduce the auxiliary variable

Jk , MRk + MT k − (k − 1)k

2
, k = 1, 2, . . . ,MT

which specifies the maximum total number of nonzero entries in Q1,k andR1,k, and, hence, also iñQ1,k

andR̃1,k, in accordance with the fact thatR andR̃ are upper triangular.

Interpolation: We quantify the complexity of interpolating an LP to one target point through an

equivalent ofcIP full multiplications. The dependence of interpolation complexity on the underlying VLSI

implementation and on the number of base points is assumed tobe incorporated intocIP. Specific strategies

for efficient interpolation along with the corresponding values ofcIP are presented in Section VIII. Since

interpolation of an LP matrix is performed entrywise, the complexity of interpolatingHk,MT
(s) to one

target point is given byck,MT

IP,H , MR(MT − k + 1)cIP (k = 1, 2, . . . ,MT ). Similarly, interpolation of

Q̃(s) andR̃(s) to one target point has complexitycIP,Q̃R̃
, JMT

cIP and the complexity of interpolating

q̃k(s) and r̃k(s) to one target point is given byc(k)
IP,q̃r̃ , (MR + MT − k + 1)cIP (k = 1, 2, . . . ,MT ).

QR decomposition:To keep our discussion independent of the QR decomposition method used, we

denote the cost of performing QR decomposition on anMR × k matrix by cMR×k
QR (k = 1, 2, . . . ,MT ).

Specific expressions forcMR×k
QR will only be required in the numerical complexity analysis in Section IX.

4In the context of the interpolation-based algorithms considered in this paper, all operands that depend onH(s) are assumed

to be variable. The coefficients of interpolation filters, e.g., are treated as constant operands. For a detailed discussion on the

difference between full multiplications and constant multiplications, we refer to Section VIII-A.
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MappingM: We denote the overall cost of mapping(Qk,MT
,Rk,MT ) to (Q̃k,MT

, R̃k,MT ) (k =

1, 2, . . . ,MT ) by ck,MT

M . In the casek = 1, application of the mappingM requires computation of

[R]1,1, [R]21,1, [R]21,1[R]2,2, [R]21,1[R]22,2, . . . ,
∏MT

i=1[R]2i,i, at the cost of2MT −1 full multiplications. This

step yields both the scaling factors∆k′−1[R]k′,k′, k′ = 1, 2, . . . ,MT , and the diagonal entries of̃R.

Now, the first column ofQ̃ is equal to the first column ofH and is hence obtained at zero complexity.

The remaining entries of̃Q and the entries of̃R above its main diagonal are obtained by scaling the

corresponding entries ofQ andR according to (4) and (5), respectively, which requiresJMT
−MR−MT

full multiplications. Hence, we obtainc1,MT

M = JMT
−MR + MT − 1. Next, we consider the casek > 1,

which only occurs in Step 3 of Algorithm III, where∆k−1 = [R̃]k−1,k−1 is already available from

the previous iteration which involves interpolation ofr̃k−1(s). The application of the mappingM first

requires computation of∆k−1[R]k,k, ∆k−1[R]2k,k, ∆k−1[R]2k,k[R]k+1,k+1, . . . , ∆k−1
∏MT

i=k[R]2i,i, at the

cost of2(MT − k + 1) full multiplications. Then, the entries ofQk,MT
and the entries ofRk,MT above

the main diagonal ofR are scaled according to (4) and (5), which requiresJMT
− Jk−1− (MT − k + 1)

full multiplications. In summary, we obtainck,MT

M = JMT
− Jk−1 + MT − k + 1 for k = 2, 3, . . . ,MT .

Inverse mappingM−1: We denote the overall cost of mapping(Q̃1,k, R̃
1,k) to (Q1,k,R

1,k) (k =

1, 2, . . . ,MT ) by c1,k
M−1 . Since∆0 = 1 and [R̃]1,1 = [R]21,1, by first computing([R̃]1,1)

1/2 and then its

inverse, we can obtain both[R]1,1 and the scaling factor(∆0[R]1,1)
−1 = 1/[R]1,1 at the cost of one

square root operation and one division. Fork′ = 2, 3, . . . , k, the scaling factors(∆k′−1[R]k′,k′)−1 can be

obtained according to (8) by computing([R̃]k′−1,k′−1[R̃]k′,k′)−1/2, at the cost ofk−1 full multiplications,

k− 1 square root operations, andk− 1 divisions. The entries ofQ1,k and the remaining entries ofR1,k

on and above the main diagonal ofR are obtained by scaling the corresponding entries ofQ̃1,k andR̃1,k

according to (6) and (7), respectively, at the cost ofJk−1 full multiplications. Since we neglect the impact

of square root operations and divisions on complexity, we obtain c1,k
M−1 = Jk+k−2 for k = 1, 2, . . . ,MT .

Reduction step:Since matrix subtraction has negligible complexity, for a given k ∈ {2, 3, . . . ,MT },
the complexity associated with the computation ofHk,MT

−Q1,k−1R
1,k−1
k,MT

, denoted byc(k)
red, is given by

the complexity associated with the multiplication of theMR × (k − 1) matrix Q1,k−1 by the (k − 1)×
(MT − k + 1) matrix R

1,k−1
k,MT

. Hence, we obtainc(k)
red = MR(k − 1)(MT − k + 1) for k = 2, 3, . . . ,MT .

C. Total Complexity of Algorithms I–III

The contribution of a given computational task to the overall complexity of a given algorithm is

obtained by multiplying the corresponding per-tone complexity, computed in the previous section, by

the number of relevant tones. For simplicity of exposition,in the ensuing analysis we restrict ourselves

to the case where the sets of OFDM tones used as base points satisfy I1 ⊆ I2 ⊆ . . . ⊆ IMT
⊂ D
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Table I

TOTAL COMPLEXITY ASSOCIATED WITH THE INDIVIDUAL COMPUTATIONAL TASKS

Computational task Symbola Algorithm I Algorithm II Algorithm III

Interpolation ofH(s) cIP,H,A Dc1,MT

IP,H BMT
c1,MT

IP,H B1c
1,MT

IP,H + 2L

MT
∑

k=2

ck,MT

IP,H

Interpolation ofQ̃(s) andR̃(s) cIP,Q̃R̃,A 0 (D −BMT
)cIP,Q̃R̃

MT
∑

k=1

(

D −Bk

)

c
(k)
IP,q̃r̃

QR decomposition cQR,A DcMR×MT

QR BMT
cMR×MT

QR B1c
MR×MT

QR + 2L

MT
∑

k=2

c
MR×(MT −k+1)
QR

MappingM cM,A 0 BMT
c1,MT

M
B1c

1,MT

M
+ 2L

MT
∑

k=2

ck,MT

M

Inverse mappingM−1 cM−1,A 0 (D −BMT
)c1,MT

M−1 2L

MT
∑

k=2

c1,k−1
M−1 +

(

D −BMT

)

c1,MT

M−1

Reduction cred,A 0 0 2L

MT
∑

k=2

c
(k)
red

a The index A is a placeholder for the algorithm number (I, II, or III).

and |Ik| = Bk = 2kL + 1 (k = 1, 2, . . . ,MT ), and consequently also|Ik\Ik−1| = 2L and |D\Ik| =
D−2kL−1 (k = 1, 2, . . . ,MT ). With the total complexity of the individual tasks summarized in Table I,

the complexity associated with Algorithms I–III is obtained as

CI = cIP,H,I + cQR,I

CII = cIP,H,II + cIP,Q̃R̃,II + cQR,II + cM,II + cM−1,II (10)

CIII = cIP,H,III + cIP,Q̃R̃,III + cQR,III + cM,III + cM−1,III + cred,III. (11)

D. Complexity Comparisons

In the following, we identify conditions on the system parameters and on the interpolation costcIP that

guarantee that Algorithms II and III exhibit smaller complexity than Algorithm I. We start by comparing

Algorithms I and II and note that

CI − CII =
(

D −BMT

)(

cMR×MT

QR − c1,MT

M−1 −
MT (MT + 1)

2
cIP

)

−BMT
c1,MT

M . (12)

Hence, ifcIP satisfies

cIP < cIP,max,II ,
2
(

cMR×MT

QR − c1,MT

M−1

)

MT (MT + 1)
(13)

then there exists aDmin such thatCII < CI for D ≥ Dmin, i.e., Algorithm II exhibits a lower complexity

than Algorithm I for a sufficiently high number of data-carrying tonesD. Moreover, forcIP < cIP,max,II,
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increasingBMT
reducesCI −CII . If the inequality (13) is met, as a consequence ofBMT

= 2MT L + 1,

(12) implies that for increasingL and with all other parameters fixed, Algorithm II exhibits smaller

savings. For largercMR×MT

QR , again with all other parameters fixed, Algorithm II exhibits larger savings.

In order to compare Algorithms II and III, we start from (10) and (11) and rewriteCII − CIII as

CII − CIII = ∆cQR + ∆cM,M−1 + ∆cIP,HQ̃R̃
− cred,III (14)

where we have introduced∆cQR , cQR,II − cQR,III, ∆cM,M−1 , cM,II + cM−1,II − cM,III − cM−1,III , and

∆cIP,HQ̃R̃
, cIP,H,II + cIP,Q̃R̃,II − cIP,H,III − cIP,Q̃R̃,III . From the results in Table I we get

∆cQR = 2L

MT
∑

k=2

(

cMR×MT

QR − c
MR×(MT−k+1)
QR

)

(15)

which is positive since, obviously,cMR×MT

QR > c
MR×(MT−k+1)
QR (k = 2, 3, . . . ,MT ). Furthermore, again

employing the results in Table I, straightforward calculations yield

∆cIP,HQ̃R̃
= −2L

MT
∑

k=2

k(k − 1)cIP = −2

3
LMT

(

M2
T − 1

)

cIP (16)

∆cM,M−1 =
(

B1 −BMT

)(

MR − 1
)

= −2L
(

MR − 1
)(

MT − 1
)

. (17)

We observe that (14)–(17), along with the expression forcred,III in Table I, imply thatCII − CIII does

not depend onD and is proportional toL. Moreover, it follows from (14) and (16) thatCIII < CII is

equivalent tocIP < cIP,max,III with

cIP,max,III ,
∆cQR + ∆cM,M−1 − cred,III

2
3LMT (M2

T − 1)
. (18)

We note that the right-hand side (RHS) of (18) depends solelyon MT andMR, since∆cQR, ∆cM,M−1 ,

andcred,III are proportional toL. Hence, if∆cQR + ∆cM,M−1 − cred,III > 0 and forcIP sufficiently small,

Algorithm III has lower complexity than Algorithm II.

We conclude this section with a comment on the memory requirements of Algorithms I and II. If

interpolation ofQ̃(s) andR̃(s) in Step 4 of Algorithm II is implemented such that the samplesof Q̃(s)

and R̃(s) at the BMT
base points are overwritten by samples ofQ̃(s) and R̃(s) at BMT

out of the

D−BMT
target points, Algorithms I and II exhibit comparable memory requirements. We can therefore

conclude that the complexity savings of interpolation-based QR decomposition over brute-force per-tone

QR decomposition need not come at the cost of increased memory requirements.

VII. T HE MMSE CASE

In this section, we modify the QR decomposition algorithms described in Section V to obtain corre-

sponding algorithms that compute the MMSE-QR decomposition of the channel matricesH(sn), n ∈ D.
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We recall from Section IV that the definitions ofM andM−1, as well as the statement of Theorem 8,

carry over to regularized QR decomposition. Moreover, MMSE-QR decomposition was defined in Sec-

tion III-B to be a special case of regularized QR decomposition. With this insight, the modification of

Algorithms I and II to the MMSE case is straightforward and simply amounts to replacing, in Step 2 of

both algorithms, QR decomposition by MMSE-QR decomposition. The resulting algorithms are referred

to as Algorithm I-MMSE and Algorithm II-MMSE, respectively.

We next discuss the extension of Algorithm III to the MMSE case. As a starting point, we con-

sider the straightforward approach of applying Algorithm III to the MMSE-augmented channel matrix

H̄(sn) , [HT (sn)
√

MT σwIMT
]T to produceQ̄(sn) and R(sn) for all n ∈ D. In the following,

we denote by ˜̄Q(sn) and R̃(sn) the matrices resulting from the application of the mappingM to

(Q̄(sn),R(sn)). We observe that the straightforward approach under consideration is inefficient, since

we are only interested in obtainingQ(sn) = Q̄1,MR(sn) and R(sn) for all n ∈ D. Consequently, we

would like to avoid computing the lastMT rows of Q̄(sn) at as many tones as possible. Now, the

reduction step (i.e., Step 4) in thekth iteration of Algorithm III requires knowledge of̄Q1,k−1(sn) at

the tonesn ∈ Ik\Ik−1 (k = 2, 3, . . . ,MT ). Hence, at the tonesn ∈ Ik\Ik−1 we must compute all

MR +MT rows ofQ̄1,k−1(sn) anyway. In contrast, at the tonesn ∈ D\IMT
we can restrict interpolation

and inverse mapping tõQ(sn) = ˜̄Q1,MR(sn) andR̃(sn). With the definitions̃qk(sn) , ˜̄Q1,MR

k,k (sn) and

q̌k(sn) , ˜̄QMR+1,MR+MT

k,k (sn), k = 1, 2, . . . ,MT , the resulting algorithm can be formulated as follows:

Algorithm III-MMSE

1) Setk ← 1.

2) InterpolateHk,MT
(s) from S(E) to S(Ik\Ik−1).

3) For eachn ∈ Ik\Ik−1, constructH̄k,MT
(sn) = ([HT (sn)

√
MT σwIMT

]T )k,MT
.

4) If k = 1, go to Step 6. Otherwise, for eachn ∈ Ik\Ik−1, apply M−1 :

( ˜̄Q1,k−1(sn), R̃1,k−1(sn)) 7→ (Q̄1,k−1(sn),R1,k−1(sn)).

5) For eachn ∈ Ik\Ik−1, overwriteH̄k,MT
(sn) by H̄k,MT

(sn)− Q̄1,k−1(sn)R1,k−1
k,MT

(sn).

6) For eachn ∈ Ik\Ik−1, perform QR decomposition on̄Hk,MT
(sn) to obtain Q̄k,MT

(sn)

andR
k,MT

k,MT
(sn), and, if k > 1, constructRk,MT (sn) = [0 R

k,MT

k,MT
(sn) ].

7) For eachn ∈ Ik\Ik−1, applyM : (Q̄k,MT
(sn),Rk,MT (sn)) 7→ ( ˜̄Qk,MT

(sn), R̃k,MT (sn)).

8) Interpolateq̃k(s) and r̃k(s) from S(Ik) to S(D\Ik).
9) If k = MT , proceed to Step 11. Otherwise, interpolateq̌k(s) from S(Ik) to S(IMT

\Ik).
10) Setk ← k + 1 and go back to Step 2.

11) For eachn ∈ D\IMT
, applyM−1 : (Q̃(sn), R̃(sn)) 7→ (Q(sn),R(sn)).
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For an in-depth discussion of the computational complexityof Algorithms I-MMSE through III-MMSE,

the interested reader is referred to [24].

VIII. E FFICIENT INTERPOLATION

Throughout this section, we consider interpolation of a generic LPa(s) ∼ (V1, V2) of maximum degree

V = V1 + V2 from the set of base pointsB to the set of base pointsT , where|B| = B and |T | = T . We

note that in the context of interpolation in MIMO-OFDM systems, relevant for the algorithms presented

in this paper, all base points and all target points correspond to OFDM tones. Therefore, in the following

we assume thatB andT satisfy the condition

B ∪ T ⊆ {s0, s1, . . . , sN−1}. (19)

The complexity analysis in Section VI showed that interpolation-based QR decomposition algorithms

yield savings over the brute-force approach only if the interpolation complexity per target pointcIP is

sufficiently small. Straightforward interpolation ofa(s), which corresponds to direct evaluation of (2),

is performed by carrying out the multiplication of theT × B interpolation matrixTB† by the B × 1

vectoraB. The corresponding complexity is given byTB, which results incIP = B full multiplications per

target point. Since exact interpolation ofq̃k(s) ∼ (kL, kL) and r̃k(s) ∼ (kL, kL) requiresB ≥ 2kL + 1

(k = 1, 2, . . . ,MT ), with the worst case beingB ≥ 2MT L+1, this complexity may be too high to realize

savings over brute-force QR decomposition. In this section, we present interpolation methods characterized

by significantly smaller values ofcIP. As demonstrated by the numerical results in Section IX, this can

then lead to significant savings of the interpolation-basedapproaches for QR decomposition over the

brute-force approach.

A. Interpolation with Dedicated Multipliers

As already noted, the interpolation matrixTB† is a function ofB, T , V1 and V2, but not of the

realization of the LPa(s) to be interpolated. Hence, as long asB, T , V1 andV2 do not change, multiple

LPs can be interpolated using the same interpolation matrixTB†, which can be computed off-line.

This observation leads to the first strategy for efficient interpolation, which consists of carrying out the

matrix-vector product(TB†)aB in (2) throughTB constant multiplications, where the entries ofTB†

are constant and the entries ofaB are variable.

In the context of VLSI implementation, full multiplications and constant multiplications differ signifi-

cantly. Whereas a full multiplication must be performed by afull multiplier which processes two variable

operands, in a constant multiplication, the fact that one ofthe operands, and more specifically its binary
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representation, is known a priori, can be exploited to perform binary logic simplifications that result in

a drastically lower circuit complexity [22]. The resultingmultiplier, called adedicated multiplierin the

following, consumes only a fraction of the silicon area (down to 1/9, as reported in [14] for complex-

valued dedicated multipliers) required by a full multiplier, and exhibits the same processing delay.

In the remainder of the paper,χC andχR denote the complexity associated with a constant multiplica-

tion of a complex-valued variable operand by a complex-valued and by a real-valued constant coefficient,

respectively. SinceTB† is real-valued forV1 = V2 and complex-valued otherwise, interpolation through

constant multiplications with dedicated multipliers has acomplexity per target point of

cIP =











χRB, V1 = V2

χCB, V1 6= V2.

By leaving a cautionary implementation margin from the best-effort value of 1/9 reported in [14],

we assume thatχC = 1/4 in the remainder of the paper. Since the multiplication of two complex-

valued numbers requires (assuming straightforward implementation) four real-valued multiplications,

whereas multiplying a real-valued number by a complex-valued number requires only two real-valued

multiplications, we henceforth assume thatχR = χC/2, which leads toχR = 1/8.

B. Equidistant Base Points

In the following, we say that the points in a set{u0, u1, . . . , uK−1} ⊂ U are equidistant onU if

uk = u0e
j2πk/K for k = 1, 2, . . . ,K−1. So far, we discussed interpolation ofa(s) ∼ (V1, V2) for generic

setsB andT . In the remainder of Section VIII we will, however, focus on the following special case.

Given integersB,R > 1, we consider the set ofB base pointsB = {bk = ej2πk/B : k = 0, 1, . . . , B−1}
and the set ofT = (R− 1)B target pointsT = {t(R−1)k+r−1 = bke

j2πr/(RB) : k = 0, 1, . . . , B − 1, r =

1, 2, . . . , R − 1}. We note that both theB points inB and theRB points inB ∪ T = {ej2πl/(RB) : l =

0, 1, . . . , RB− 1} are equidistant onU . Hence, interpolation ofa(s) from B to T essentially amounts to

an R-fold increase in the sampling rate ofa(s) on U , and will therefore be termedupsampling ofa(s)

from B equidistant base points by a factor ofR in the remainder of the paper. The corresponding base

point matrixB and target point matrixT are constructed according to their definitions in Section II-C.

We note that forB ≥ V + 1, B satisfiesBHB = BIB and henceB† = (1/B)BH.

We recall that the number of OFDM tonesN is typically a power of two. Therefore, in order to

haveRB equidistant points onU while satisfying the condition (19), bothB andR are constrained to

be powers of two. In order to satisfy the conditionB ≥ V + 1 mandated by the requirement of exact

interpolation, we setB = 2⌈log(V +1)⌉.

December 20, 2010 DRAFT



21

Finally, we mention that samples ofa(s) at a set of equidistant base points onU can be obtained from

samples ofa(s) at any set of base points onU (of cardinality at leastV +1) through an additional inter-

polation step. This idea is discussed in detail in the context of MIMO-OFDM channel estimation in [14].

C. Interpolation by FIR Filtering

This section discusses upsampling ofa(s) from B equidistant base points by a factor ofR by finite

impulse response (FIR) filtering. We mention that an alternative FFT-based approach is presented in [24].

Proposition 9. In the context of upsampling fromB equidistant base points by a factor ofR, the

B(R− 1)×B interpolation matrixTB† satisfies the following properties:

1) There exists an(R− 1)×B matrix F0 such thatTB† can be written as

TB† =
[

(F0CB)T (F0C
2
B)T · · · (F0C

B
B)T

]

T (20)

with theB ×B circulant matrix

CB ,

[

0 IB−1

1 0

]

.

2) The matrixF0, as implicitly defined in (20), satisfies

[

F0

]

r,k+1 =
[

F0

]

∗
R−r,B−k, r = 1, 2, . . . , R− 1, k = 0, 1, . . . , B − 1.

Proof: SinceB† = (1/B)BH, the entries ofTB† are given by

[

TB†
]

k(R−1)+r,k′+1 =
1

B

V2
∑

v=−V1

e−j2πv R(k−k
′)+r

RB (21)

for k, k′ = 0, 1, . . . , B − 1 andr = 1, 2, . . . , R− 1. The two properties are now established as follows:

1) The RHS of (21) remains unchanged upon replacingk andk′ by (k+1)mod B and(k′+1)mod B,

respectively. Hence, for a givenr ∈ {1, 2, . . . , R− 1}, theB ×B matrix obtained by stacking the

rows indexed byr, (R − 1) + r, . . . , (B − 1)(R − 1) + r (in this order) ofTB† is circulant. By

taking F0 to consist of the lastR− 1 rows of TB†, and usingCB
B = IB, along with the fact that

for b ∈ Z, the multiplicationF0C
b
B corresponds to circularly shifting the columns ofF0 to the

right by bmod B positions, we obtain (20).

2) The entries ofF0 are obtained by settingk = B − 1 in (21) and are given by

[F0]r,k′+1 =
1

B

V2
∑

v=−V1

e−j2πv r−R(k′+1)

RB , r = 1, 2, . . . , R− 1, k′ = 0, 1, . . . , B − 1.
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Hence, forr = 1, 2, . . . , R − 1 andk′ = 0, 1, . . . , B − 1, we obtain

[F0]
∗
R−r,B−k′ =

1

B

V2
∑

v=−V1

ej2πv R−r−R(B−k
′)

RB =
1

B

V2
∑

v=−V1

e−j2πv r−R(k′+1)

RB = [F0]r,k′+1.

We note that Property 1 in Proposition 9 implies that the matrix-vector multiplication(TB†)aB in (2)

can be carried out through the application ofR − 1 FIR filters. Specifically, forr = 1, 2, . . . , R − 1,

the entriesr, r + R, . . . , r + (B − 1)R of aT can be obtained by computing the circular convolution

of aB with the impulse response of lengthB contained in therth row of F0. By allocatingB dedicated

multipliers per FIR filter (one per impulse response tap), wewould need a total of(R − 1)B dedicated

multipliers. We will next see that the complex-conjugate symmetry in the rows ofF0, formulated as

Property 2 in Proposition 9, allows to reduce the number of dedicated multipliers and the interpolation

complexity by a factor of two.

In the following, we assume that the multiplications of a variable complex-valued operand by a constant

γ ∈ C and by its complex conjugateγ∗ can be carried out using the same dedicated multiplier, and that the

resulting complexity is comparable to the complexity of multiplication byγ alone. This is justified as the

multiplication byγ∗, compared to the multiplication byγ, involves the same four underlying real-valued

multiplications and only requires two additional sign flips, which have significantly smaller complexity

than the real-valued multiplications. Thus, we can performmultiplication by the coefficients[F0]r,k+1 and

[F0]R−r,B−k = [F0]
∗
r,k+1 through a single dedicated multiplier (r = 1, 2, . . . , R/2, k = 0, 1, . . . , B/2−1).

This resource sharing approach leads to

cIP =











χR

2 B, V1 = V2

χC

2 B, V1 6= V2.
(22)

So far, we assumed thata(s) is interpolated from theB = 2⌈log(V +1)⌉ base points inB, resulting incIP

as in (22). We will next show that the interpolation complexity can be further reduced by using a smaller

number of base pointsB′ < B. Interpolation will be exact as long as the conditionB′ ≥ V +1 is satisfied.

As done above, we assume knowledge of theB samplesa(s), s ∈ B. In the following, however, we

require that for a given target pointtr, the samplea(tr) is obtained by interpolation from onlyB′ base

points, picked from theB elements ofB as a function oftr. For simplicity of exposition, we assume

thatB′ is even, and for everytr ∈ T we choose theB′ elements ofB that are located closest totr on U .

We next show that the resulting interpolation ofa(s) from B to T can be performed by FIR filtering.

In the following, we defineB disjoint subsetsTk of T (satisfying
⋃B−1

k=0 Tk = T ) and consider the

corresponding subsetsBk of B, defined such that for all points inTk, theB′ closest base points are given

by the elements ofBk (k = 0, 1, . . . , B − 1). We next show that the interpolation matrix corresponding
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to interpolation ofa(s) from Bk to Tk is independent ofk. To this end, we first consider the set of target

points T0 , {t(B−1)(R−1)+r−1 : r = 1, 2, . . . , R − 1}, containing theR − 1 target points located onU
between the base pointsbB−1 andb0. The subset ofB containing theB′ points that are closest to every

point in T0 is given byB0 , {b0, b1, . . . , bB′/2, bB−B′/2, bB−B′/2+1, . . . , bB−1}. Interpolation ofa(s)

from B0 to T0 involves the base point matrixB0, the target point matrixT0, and the interpolation

matrix T0B
†
0, constructed as described in Section II-C. Next, fork = 1, 2, . . . , B − 1, we denote by

Bk and Tk the sets obtained by multiplying all elements ofB0 and T0, respectively, byej2πk/B. We

note thatTk contains theR − 1 target points located onU between the base pointsbk−1 and bk, and

thatBk is the subset ofB containing theB′ points that are closest to every point inTk. With the unitary

matrix Sk , diag((ej2πk/B)V1 , (ej2πk/B)V1−1, . . . , (ej2πk/B)−V2), interpolation ofa(s) from Bk to Tk
involves the base point matrixBk = B0Sk, with pseudoinverseB†

k = S−1
k B

†
0, the target point matrix

Tk = T0Sk, and the interpolation matrixTkB
†
k = T0SkS

−1
k B

†
0 = T0B

†
0 (k = 1, 2, . . . , B − 1). Hence,

the interpolation matrix is independent ofk and is the same as in the interpolation ofa(s) from B0 to T0.

Now, interpolation ofa(s) from B to T , with the constraint that the sample ofa(s) at every target point

is computed only from the samples ofa(s) at theB′ closest base points, amounts to performing interpola-

tion of a(s) fromBk to Tk for all k = 0, 1, . . . , B−1, and can be written in a single equation asaT = FaB.

Here, the(R−1)B×B interpolation matrixF is equal to the RHS of (20), with the(R−1)×B matrix

F0 =
[

(T0B
†
0)1,B′/2 0 (T0B

†
0)B−B′/2+1,B

]

(23)

which contains an all-zero submatrix of dimension(R − 1) × (B − B′). Hence,F satisfies Property 1

of Proposition 9, withF0 given by (23). In addition, we state without proof thatF0 in (23) satisfies

Property 2 of Proposition 9. We can therefore conclude that interpolation from the closestB′ base points

maintains the structural properties of interpolation fromall B base points and, as above, can be performed

by FIR filtering usingR− 1 filters with dedicated multipliers that exploit the conjugate symmetry in the

rows of F0. Since the rows ofF0 in (23) containB −B′ zeros, theR− 1 impulse responses now have

lengthB′, and we obtain

cIP =











χR

2 B′, V1 = V2

χC

2 B′, V1 6= V2.
(24)

IX. N UMERICAL RESULTS

The results presented so far do not depend on a specific QR decomposition method. For the numerical

complexity comparisons presented in this section, we become more specific and assume UT-based QR de-

composition performed through Givens rotations and coordinate rotation digital computer (CORDIC)
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operations [25], [26], which is the method of choice in VLSI implementations [23], [27]. For a generic

matrixA ∈ C
P×M with P ≥M , it was shown in [23] that the complexity of UT-based QR decomposition

of A, as required in Algorithms I–III, is given bycP×M
QR = 3

2(P 2M +PM2)−M3− 1
2 (P 2−P +M2+M)

and that the complexity of UT-based MMSE-QR decomposition of A, as required in Algorithms I-MMSE

and II-MMSE, is given5 by cP×M
MMSE-QR , 3

2(P 2M + PM2) − 1
2P 2 + 1

2P. The results in [23] carry over,

in a straightforward fashion, to UT-based QR decompositionof the augmented matrix[AT αIM ]T, as

required in Algorithm III-MMSE, to yieldcP×M
QR,III-MMSE , cP×M

MMSE-QR + 3
2PM2 + 1

2PM .

A. Efficient Interpolation and Performance Degradation

The interpolation complexity (24) of the approach described in Section VIII-C can be further reduced by

choosing the number of base pointsB′ to be smaller than the number of coefficientsV +1 that determine

an LP of maximum degreeV . This violates the conditionB′ ≥ V +1 for exact interpolation and therefore

leads to a systematic interpolation error. In the following, we evaluate the resulting trade-off between

interpolation complexity and interpolation accuracy in the context of an interpolation-based MIMO-

OFDM receiver, as we gradually reduceB′, and hence alsocIP as in (24), in the interpolation of̃Q(s)

andR̃(s) as required by Algorithm II. The corresponding analysis forthe interpolation of̃qk(s) andr̃T
k (s),

k = 1, 2, . . . ,MT , as required by Algorithm III, is more involved and does not yield any additional insights

into the trade-off under consideration. In order to simplify the simulation setup, we interpolate the channel

transfer function matrixH(s) exactly and perform inexact interpolation only on the LP matrices Q̃(s)

and R̃(s). The numerical results presented in the following demonstrate that for Algorithm II to have

smaller complexity than Algorithm I, settingB′ to a value smaller thanV + 1, and hence accepting a

systematic error in the interpolation of̃Q(s) and R̃(s), may be necessary. On the other hand, we will

also see that the resulting degradation in detection performance, in terms of both coded and uncoded bit

error rate (BER), can be negligible even for values ofB′ that are significantly smaller thanV + 1.

In the following, we consider a MIMO-OFDM system withD = N = 512, MR = 4, and either

MT = 2 or MT = 4, operating over a frequency-selective channel withL = 15. The data symbols are

drawn from a 16-QAM constellation. In the coded case, a rate1/2 convolutional code with constraint

length 7 and generator polynomials[133o 171o] is used. The receiver performs maximum-likelihood

detection through hard-output sphere decoding. Our results are obtained through Monte Carlo simulation,

where averaging is performed over the channel impulse response tapsH0,H1, . . . ,HL, assumed to

have entries i.i.d.CN (0, 1/(L + 1)). This assumption on the channel statistics, along with the average

5In [23], the last term in the expression forcP×M
MMSE-QR was erroneously specified as−(1/2)P .
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Table II

SIMULATION PARAMETERS

MT = 2 MT = 4 Interpolation of

B′ cIP,(Q̃,R̃) CII /CI B′ cIP,(Q̃,R̃) CII /CI Q̃(s) andR̃(s)

64 4 0.82 128 8 1.52 exact

32 2 0.55 32 2 0.71 inexact

16 1 0.41 24 1.5 0.64 inexact

12 0.75 0.37 16 1 0.57 inexact

8 0.5 0.34 8 0.5 0.51 inexact

Common to all simulations are the parametersD = N = 512, L = 15, MR = 4, andcIP,H = 2.

transmit power being given byE[cH
n cn] = 1 and the noise varianceσ2

w, implies that the per-antenna

receive signal-to-noise ratio (SNR) is1/σ2
w. The receiver employs either Algorithm I or Algorithm II to

computeQ(sn) andR(sn) at all tones. Interpolation is assumed to be performed through FIR filtering

with dedicated multipliers. As discussed in Section VIII-A, we assume that a multiplication of a variable

operand by a complex-valued and by a real-valued FIR filter coefficient has a complexity corresponding to

χC = 1/4 and toχR = 1/8 full multiplications, respectively. In Step 1 of both algorithms, the LP matrix

H(s) ∼ (0, L) with maximum degreeV = L is interpolated exactly fromB = L + 1 = 16 equidistant

base points by FIR filtering. Since0 = V1 6= V2 = L, the corresponding interpolation complexity per

target point is obtained from (22) ascIP,H , (L+ 1)χC/2 = 2. In Step 4 of Algorithm II, we interpolate

Q̃(s) ∼ (MT L,MT L) and R̃(s) ∼ (MT L,MT L), with maximum degreeV = 2MT L, through FIR

filtering from B′ ≤ B = 2⌈log(V +1)⌉ base points. WithV1 = V2 = MT L, the corresponding interpolation

complexity per target point is obtained from (24) ascIP,(Q̃,R̃) , χRB′/2. Here, the FIR filters for exact

interpolation derived in Section VIII-C are replaced by FIRfilters of lengthB′ < V + 1 obtained using

an ad-hoc method described in [24]. Finally, since at the tones n ∈ D\IMT
, the matricesQ(sn) and

R(sn) are computed through mapping, interpolation, and inverse mapping in Algorithm II rather than

directly from H(sn) as in Algorithm I, in fixed-point implementations AlgorithmII can be expected

to suffer more from error propagation than Algorithm I. In order to compensate for this, Algorithm II

may require the use of larger wordwidths, implying an increase in its overall complexityCII . This aspect

will not be taken into account in the following. In the numerical results shown below, we ensure that

systematic errors in the interpolation ofQ̃(s) andR̃(s), arising fromB′ being smaller thanV + 1, are

the sole source of detection performance degradation by using double-precision floating-point arithmetic.

Table II summarizes the simulation parameters, along with the corresponding values of the interpolation

complexity per target pointcIP,(Q̃,R̃) and the resulting algorithm complexity ratioCII/CI , which quantifies
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Figure 1. Bit error rates as a function of SNR for different interpolation filter lengths, with and without channel coding, for

(a) MT = 2 and (b)MT = 4. The results corresponding to exact QR decomposition are provided for reference.

the savings of Algorithm II over Algorithm I. We note that forMT = 4, exact interpolation results

in CII > CI . Hence, in this case inexact interpolation is necessary to obtain complexity savings of

Algorithm II over Algorithm I. In contrast, forMT = 2, Algorithm II exhibits lower complexity than

Algorithm I even in the case of exact interpolation.

Figs. 1a and 1b show the resulting BER performance forMT = 2 and MT = 4, respectively, both

for the coded and the uncoded case. For uncoded transmissionand inexact interpolation, we observe an

error floor at high SNR which rises with decreasingB′. For MT = 2 and uncoded transmission, we can

see in Fig. 1a and Table II, respectively, that an interpolation filter length ofB′ = 8 results in negligible

performance loss for SNR values of up to 18 dB, and yields complexity savings of Algorithm II over

Algorithm I of 66%. ChoosingB′ = 16 yields close-to-optimum performance for SNR values of up to

24 dB and complexity savings of 59%. ForMT = 4 and uncoded transmission, Fig. 1b and Table II show

that the interpolation filter length can be shortened fromB′ = 128 to B′ = 8, leading to complexity

savings of Algorithm II over Algorithm I of 49%, at virtuallyno performance loss in the SNR range

of up to 21 dB. SettingB′ = 32 results in a performance loss, compared to exact interpolation, of less

than 1 dB at BER= 10−6 and in complexity savings of 29%. In the coded case, both forMT = 2

andMT = 4, we can see in Figs. 1a and 1b that the BER curves for AlgorithmII, for all values ofB′

under consideration, essentially overlap with the corresponding curves for Algorithm I for BERs down

to 10−6. This observation suggests that the use of channel coding allows to employ significantly shorter

FIR filters for the interpolation of̃Q(s) andR̃(s) (corresponding to a smallercIP,Q̃R̃
and hence to a lower

CII , which in turn implies higher savings of Algorithm II over Algorithm I) than in the uncoded case. We
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Figure 2. Complexity of Algorithms II and III as percentage of complexity of Algorithm I for D = 500, and L = 15, (a)

including and (b) excluding the complexity of interpolation of H(s).

conclude that in the practically relevant case of coded transmission, complexity savings of Algorithm II

over Algorithm I can be obtained at negligible detection performance loss. Further numerical results

indicate that the latter statement continues to hold even inthe presence of channel estimation errors

induced by training-based estimation of the channel matricesH(sn), n ∈ E . Specifically, here we applied

the method described in [28] (in the context of flat-fading MIMO) on a per-tone basis.

B. Algorithm Complexity Comparisons

The discussion in Section VIII and the numerical results in Section IX-A demonstrate that for the case

of upsampling from equidistant base points, small values ofcIP can be achieved and inexact interpolation

does not necessarily induce a significant detection performance loss. Therefore, in the following, we

assume that for allk = 1, 2, . . . ,MT , the setIk, containing indices of OFDM tones used as base points,

is such thatS(Ik) containsBk = |Ik| = 2⌈log2(2kL+1)⌉ points that are equidistant onU , and we setcIP = 2.

For D = 500, L = 15, and different values ofMT and MR, Fig. 2a shows the complexity of

Algorithms II and III as percentage of the complexity of Algorithm I. We observe savings of Algorithms II

and III over Algorithm I as high as 48% and 53%, respectively.Furthermore, we can see that Algorithm III

exhibits a lower complexity than Algorithm II in all considered configurations. This is a consequence of

the small value ofcIP and of Algorithm III, with respect to Algorithm II, trading lower QR decomposition

cost against higher interpolation cost. Moreover, we observe that the savings of Algorithms II and III

over Algorithm I are more pronounced for largerMR−MT . For the special caseE = D implying i) that

H(sn) is known at all data-carrying tonesn ∈ D and ii) that Algorithm I simplifies to the computation
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Figure 3. (a) Complexity of Algorithms II-MMSE and III-MMSEas percentage of complexity of Algorithm I-MMSE for

D = 500. (b) Absolute complexity of Algorithms I–III and I-MMSE through III-MMSE, for MT = 3, MR = 4, andL = 15.

of D QR decompositions, Fig. 2b shows that the relative savings of Algorithms II and III over Algorithm I

are somewhat reduced, but still significant.

For D = 500, MT = MR, and different values ofL, Fig. 3a shows the complexity of Algorithms II-

MMSE and III-MMSE as percentage of the complexity of Algorithm I-MMSE. The fact (which also

carries over to the savings of Algorithms II and III over Algorithm I) that the savings of Algorithms

II-MMSE and III-MMSE over Algorithm I-MMSE are more pronounced for smaller values ofL is a

consequence of the number of base pointsBk being an increasing function ofL. In Fig. 3a, we can see

that despite the low interpolation complexity implied bycIP = 2, Algorithm III-MMSE exhibits a higher

complexity than Algorithm II-MMSE for all considered values ofMT = MR andL. This is a consequence

of the fact that the overall complexity of the UT-based QR decompositions required in Step 6 of Algo-

rithm III-MMSE can be larger than the overall complexity of the UT-based MMSE-QR decompositions

required in Step 2 of Algorithm II-MMSE. We mention that if (MMSE-)QR decomposition is carried out

by GS-based algorithms rather than by UT-based algorithms,Algorithm III-MMSE can exhibit a lower

complexity than Algorithm II-MMSE for a nonempty range of values of the parametersMT = MR andL.

Finally, Fig. 3b shows the absolute complexity of Algorithms I–III and I-MMSE through III-MMSE

as a function ofD, for MT = 3, MR = 4, and L = 15. We observe that the complexity savings of

Algorithms II and III over Algorithm I and the savings of Algorithms II-MMSE and III-MMSE over

Algorithm I-MMSE grow linearly in D. This behavior was predicted for Algorithms I and II by the

analysis in Section VI-D, where we showed thatCI − CII is an affine function ofD and is positive for

small cIP and largeD.
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X. CONCLUDING REMARKS

We demonstrated that, for a wide range of system parameters,the proposed interpolation-based QR

decomposition algorithms can yield significant complexitysavings over brute-force per-tone QR decom-

position, provided that the interpolation complexity is sufficiently small. Nevertheless, since2MT L + 1

base points are required for the interpolation ofQ̃(s) andR̃(s), and since the worst caseL = LCP must

be accounted for, these algorithms can only be applied ifN > 2MT LCP+1. Consequently, the proposed

algorithms are not suitable for use in, e.g., the IEEE 802.11n standard and some of the configurations

of the IEEE 802.16e standard, as the corresponding channel oversampling ratiosN/LCP are not large

enough. This motivates further development of the methods proposed in this paper, with the goal of

reducing the number of base points required for interpolation-based QR decomposition. Specifically,

open problems include i) determining whether the mappingM can be replaced by a different mapping

producing LP matrices with maximum degree smaller than2MT L, and ii) investigating whether methods

for interpolation under unitarity constraints [29], applied to the interpolation ofQ(s), would allow to

further reduce the number of base points required.
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