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Abstract

Detection algorithms for multiple-input multiple-outp(NIIMO) wireless systems based on orthog-
onal frequency-division multiplexing (OFDM) typically geire the computation of a QR decomposition
for each of the data-carrying OFDM tones. The resulting cataional complexity will, in general, be
significant. Motivated by the fact that the channel matraeasing in MIMO-OFDM systems result from
oversampling of a polynomial matrix, we formulate integdn-based QR decomposition algorithms.
An in-depth complexity analysis, based on a metric relefantvery large scale integration (VLSI)
implementations, shows that the proposed algorithms, feufficiently large number of data-carrying
tones and sufficiently small channel order, provably extslgnificantly smaller complexity than brute-

force per-tone QR decomposition.

Index Terms

Interpolation, polynomial matrices, multiple-input niple-output (MIMO) systems, orthogonal fre-
quency-division multiplexing (OFDM), QR decompositiongcsessive cancelation, sphere decoding, very

large scale integration (VLSI).

. INTRODUCTION

The use of orthogonal frequency-division multiplexing (QW) drastically reduces data detection com-
plexity in wideband multiple-input multiple-output (MIMQwireless systems by decoupling a frequency-
selective fading MIMO channel into a set of flat-fading MIM®annels. Nevertheless, MIMO-OFDM
detectors still pose significant challenges in terms of aganal complexity, as processing has to be

performed on a per-tone basis.
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Specifically, in the setting of coherent MIMO-OFDM detectiavhere the receiver is assumed to have
perfect channel knowledge, linear detectors [1] requird¢rim@nversion, whereas successive cancelation
receivers [2] and sphere decoders [3], [4] require QR deowitipn, in all cases on each of the data-
carrying OFDM tones. The corresponding computations,éeragoreprocessingn the following, have to
be performed at the rate of change of the channel which, diépgon the propagation environment, is typ-
ically much lower than the rate at which the transmissionobfial data symbols takes place. Nevertheless,
as payload data received during the preprocessing phasdmsitored in a dedicated buffer, preprocessing
represents a major bottleneck in terms of the size of thifebafnd the resulting detection latency [5].

In a very large scale integration (VLSI) implementatiore #traightforward approach to reducing the
preprocessing latency is to employ parallel processing iowdtiple matrix inversion or QR decomposition
units, which, however, comes at the cost of increased siliaea. In [6], the problem of reducing
preprocessing complexity in linear MIMO-OFDM receiversaddressed on an algorithmic level by
formulating efficient interpolation-based algorithms foatrix inversion that take the polynomial nature
of the MIMO channel transfer function explicitly into acatuSpecifically, the algorithms proposed in [6]
exploit the fact that the channel matrices arising in MIMGEM systems result from oversampling of
the polynomial MIMO channel transfer function on the unitc@. The goal of the present paper is to
devise computationally efficient interpolation-basedétypms for QR decomposition in MIMO-OFDM
systems, using results on QR decomposition of Laurent pohyal (LP) matrices recently presented in [7].
Differently from the approach reported in [8], which appiroates QR factors of a polynomial matrix (that,
as shown in [7], in general are neither LP nor rational magidy LP matrices, the algorithms presented
in this paper yieldexactQR factors. Although, throughout the paper, we focus on Q€buhgosition in
the context of coherent MIMO-OFDM detectors, our resulsoalpply to transmit precoding schemes for
MIMO-OFDM (under the assumption of perfect channel knowkedt the transmitter) requiring per-tone
QR decomposition, both for point-to-point MIMO channel$ #hd for multiantenna broadcast channels
[10]. In [11], it is shown that unitary precoding matrices toansmit beamforming (based on singular
value decomposition rather than QR decomposition) in MIKBBBM systems with limited feedback can
be computed efficiently through inexact interpolation undeitarity constraints.

The redundancy in the channel transfer function sampleingrirom the use of OFDM (both in the
single-antenna case and in the MIMO case) can be exploitedeircontext of channel estimation, as
done, e.g., in [12], [13], [14] for single-antenna systeinsthis paper, we show how this property can
be used to reduce the complexity of computing QR factors di@IOFDM channel matrices. Finally,
we mention that follow-up work based on the conference wersi this paper [15] was reported in [16].

The contributions of this paper can be summarized as foll@ased on the results in [7], we formulate
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interpolation-based algorithms for QR decomposition ifM@-OFDM systems. Using a computational
complexity metric relevant for VLSI implementations, wentlenstrate that the proposed interpolation-
based algorithms can, depending on the system paramethibit significantly smaller complexity than
brute-force per-tone QR decomposition. Furthermore, waesgmt strategies for efficient interpolation
of LPs that take the specific structure of the problem at hamd account. Finally, we provide a
numerical analysis of the trade-off between the computaticomplexity of the proposed interpolation-

based QR decomposition algorithms and the performanceroégmonding MIMO-OFDM detectors.

[I. MATHEMATICAL PRELIMINARIES
A. Notation

CP*M denotes the set of complex-valugtdx M matricesd = {s € C : |s| = 1} indicates the unit
circle. () is the empty setl.A| stands for the cardinality of the sgt. mod is the modulo operator. All
logarithms are to the base B[] denotes the expectation operat@i/ (0, o%) stands for the circularly-
symmetric complex Gaussian distribution with variam@e Throughout the paper, we use the following
conventions. First, ifky < k1, Eﬁ"’:kl ar = 0, regardless ofy,. Second, sequences of integers of the
form ki, k1 + A, ... ko, with A > 0, simplify to the sequencé,, ks if ks = k1 + A, to the single
valuek; if ks = k1, and to the empty sequenceiif < k.

Ax AT AH AT andrank(A) denote the entrywise conjugate, the transpose, the cdejugaspose,
the pseudoinverse, and the rank, respectively, of the xnatriA], ,,, indicates the entry in thgth row

andmth column of A. AP+P2 andA,,, ,,, stand for the submatrix given by the rows, p; +1,...,p2

of A and the submatrix given by the columnsg,m; + 1,...,msy Of A, respectively. Furthermore, we
set AL, £ (Apym,)P P> and AL 2 (A, m,)™. diag(ay, ag, ..., anr) indicates theM x M

diagonal matrix with the scalar,, as itsmth main diagonal element,, is the M x M identity matrix.
0 denotes the all-zeros matrix of appropriate size. Colunstors and row vectors are represented by
lower-case bold symbols and by lower-case bold underliyeabsls, respectively. Finally, orthogonality

and norm of complex-valued column vectets a, are induced by the inner produsf’ as.

B. QR Decomposition

We consider a matribA € CP*M with P > M. In this section, mostly taken from [7], we briefly

review some basics on QR decomposition along with relatedltsethat will be needed later in the paper.

Definition 1. We call any factorizatiol®A = QR, for which the matrice®Q € C”*M andR ¢ CM*M

satisfy the following conditions, R decompositioof A with QR factorsQ andR:
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1) the nonzero columns d@ are orthonormal
2) R is upper triangular with real-valued nonnegative entrirdte main diagonal
3) R=QFA

Practical algorithms for QR decomposition are either baseGram-Schmidt (GS) orthonormalization

or on unitary transformations (UT) [17].

Definition 2. The ordered column ranlof A is the number

K 0, rank(A;;) =0

max{k : rank(A; ;) = k}, else.

Proposition 3. If A has ordered column rank > 0, thenQ; x and RV¥ are unique and satisfy

1) QI Qur =1k

2) RV =Rl >0, k=12,... K.
We note that for full-rankA, we haveK = M. In this case, the uniqueness @Qf and R implies that
A = QR can be calledhe QR decomposition oA with the QR factorsQ andR. Forrank(A) < M,
different QR decomposition algorithms will in general pucd different QR factors. Throughout the
paper, wheneveA is not guaranteed to have full rank, we simply speala @R decomposition oA
with QR factorsQ andR.

Proposition 4. Let A = QR be a QR decomposition dk. Then, forM > 1 and for a givenk €

Lk—1 kM " Lk—1
{2,3,..., M}, Apar — le’f—thM = kaMRk:,]VI is a QR decomposition okj, ys — le’f—thM .

Definition 5. Theregularized QR decompositiai A with the real-valuedegularization parameter, >
0, is the unique factorizatiolh = QR, where theregularized QR factorQ € C”*™ andR e CM*M
are obtained as followsA = QR is the unique QR decomposition of the full-rail + M) x M

augmented matribA = [AT oI, )% andQ = QU7

C. Laurent Polynomials and Interpolation

In the following, we review basic results on the interpaatiof LPs and establish the corresponding
notation. Various strategies for computationally effitisrierpolation of LPs making use of the specific

structural properties of the problem at hand are present&ection VIII.

Definition 6. Given a matrix-valued functiol\ : ¢/ — CP*M and integersV;, V, > 0, the notation
A(s) ~ (V1, V%) indicates that there exist coefficient matricks € CP*M, v = —V;, -V +1,..., V4,
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such that

Vs
A(s)= > Ay, sell. 1)
v==V1
If A(s) ~ (V1,Va), thenA(s) is aLaurent polynomialLP) matrix with maximum degre&; + V5.

In the remainder of this section, we consider thed(P) ~ (V1, V2) with maximum degre& = V;+ V5.
The following results can be directly extended to the intéafion of LP matrices through entrywise
application. Borrowing terminology from signal analysige call the value ofu(s) at a given point

so € U the samplea(sy).

Definition 7. Interpolationof the LPa(s) ~ (Vi, V2) from the setB = {bg, b1,...,bp_1} C U, contain-
ing B distinctbase pointsto the se? = {ty,t1,...,tr—1} C U, containingl’ distincttarget pointsjs the
process of obtaining the sample&y),a(t1),...,a(tr—1) from the samples(by),a(by),...,a(bp_1),
with knowledge ofV; and Va, but without explicit knowledge of the coefficients.y,,a_v, 11, ..., ay,

that determines(s) according to (1).

In the following, we assume thd® > V + 1. By defining the vectora £ [a_y, a_v,+1 - ay,)%,
ag = [a(by) a(by) --- a(bp_1)]%, andar £ [a(ty) a(t1) --- a(tr_1)]7, we note thataz = Ba, with
the B x (V +1) base point matriXBJ; , = by 7" (i=1,2,...,B,v=1,2,...,V +1) anday = Ta,
with the T" x (V + 1) target point matrix[T};, = t/* 7" (i = 1,2,...,T, v = 1,2,...,V 4 1). Now,
B can be written aBB = DgVp, whereDg £ diag(by',b",...,b5 ;) and Vg is the B x (V + 1)
Vandermonde matriXVzl;, = bi‘j’frl (¢ =12,...,B,v=12....V+1). Since the base points
bo, b1, ...,bp_1 are distinct,Vz has full rank [18]. Hencesank (V) = V + 1, which, together with the
fact thatDg is nonsingular, implies thatnk(B) = V 4 1. Therefore, the coefficient vectaris uniquely
determined by the3 samples ofa(s) at the base pointsy, by, ...,bs_; according toa = Bfag, and

interpolation ofa(s) from B to 7 can be performed by computing
ar = TBTaB. (2)

In the remainder of the paper, we call tliex B matrix TB' the interpolation matrix

For later use, we briefly comment on interpolation from naaynples at the base points. Specifically,
for ag subject to additive noise s, there exists, in general, no LiRs) ~ (17, V»2) such that the entries of
the vectorag+wp can be seen as the samples:0f) at the base point8. However, as is easily verified,
interpolation according to (2), withg replaced byas + wp, forces the resulting vectafBf (as + wp)

to consist of samples of an Lis) ~ (V4, V2) at the target pointg.
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We conclude this section by noting that in the special d4se V5, we haveB = B*E andT = T*E,
where the(V + 1) x (V + 1) matrix E is obtained by flippindly+; upside down. Since the operation
of taking the pseudoinverse commutes with entrywise catjag, it follows thatB" = E(BT)* and, as

a consequence @&? = Iy, we obtainTB = (TBT)* i.e., the interpolation matrix is real-valued.

1. MIMO-OFDM AND PROBLEM STATEMENT
A. System Model

We consider a MIMO system [1] witi/r receive antennas and |18 denote the number of spatial
data streams transmitted. In the setting of spatial mekipl [1], My equals the number of physical
transmit antennas. We make the conceptual assumptign> My throughout the paper, as avlp-
dimensional signal can not, in general, be recovered frorolaervation of lower dimensionality.

The matrix-valued impulse response of the frequency-seee81IMO channel is given by the taps

H; ¢ CM=xMr (] = 0,1,..., L) with the corresponding matrix-valued transfer function
L
H(ej27r9) = ZHle_j%w, 0<o<1
1=0

which satisfiesH(s) ~ (0, L). Under OFDM signaling, the use of a cyclic prefix of lengthp > L
essentially turns the action of the channel (in the singpa# single-output case) into the multiplication
by a circulant matrix, which is diagonalized by the discietairier transform. The effective input-output
relation in a MIMO-OFDM system with.cp > L and N OFDM tones is therefore given by [19]

dn:H(sn)cn—i—wn, n=01,...,N—1

with the tone index:, the transmit signal vectar,, £ [Cn,1 Cn2 - cn,MT]T, the receive signal vector
d, 2 [dp1 dna -+ doa,)h, the additive noise vectow,, and s, 2 ¢/2™/N, Here, ¢, , stands for
the complex-valued data symbol, taken from a finite coretielh O, transmitted by thenth antenna
on thenth tone andd, ,, is the signal observed at theth receive antenna on theth tone. Forn =
0,1,...,N —1, we assume that,, contains statistically independent entries and sati&fles] = 0 and
Elcfc,] = 1. Again forn = 0,1,..., N — 1, we assume tha¥,, is statistically independent af, and
contains entries that are independent and identicallyilliged (i.i.d.) asCA (0, 02), wheres? denotes
the noise variance and is assumed to be known at the receiver.

In practice,N is typically chosen to be a power of two in order to allow fali@&ént OFDM processing
based on the Fast Fourier Transform (FFT). Moreover, a ssudiset of the/V tones is typically set
aside for pilot symbols and virtual tones at the frequenaydbedges, which help to reduce out-of-band
interference and relax the pulse-shaping filter requirdméie collect the indices corresponding to fhe

tones carrying payload data into the g {0,1,..., N —1}. Typical OFDM systems hav® > 3Lcp.
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B. QR Decomposition in MIMO-OFDM Detectors

Widely used algorithms for coherent detection in MIMO-OFDdyistems include successive cance-
lation (SC) detectors [1], both zero-forcing (ZF) and miom mean-square error (MMSE) [2], [20],
as well as sphere decoders, both in the original formula@n[4] requiring ZF-based preprocessing,
and in the MMSE-based form proposed in [21]. These detedlgorithms require QR decomposition
in the preprocessing step, or, more specifically, comprnatif matricesQ(s,,) and R(s,), n € D,
defined as follows. In the ZF cas@(s,) andR(s,,) are QR factors oH(s,,), whereas in the MMSE
case,Q(s,)R(s,) is the MMSE-QR decompositioof H(s,,), defined as the special case of regularized
QR decomposition oF(s,,) obtained by choosing the regularization parameter as\/Mrao,,. Both for
ZF-based and MMSE-based preprocessing, SC detectorstiaigesolve the linear system of equations
Q7 (s,)d,, = R(sy)¢, through back-substitution (with rounding of the internediresults to elements
of O [1]) to obtaine,, € OMr, whereas sphere decoders exploit the upper triangulaiii(e,,) to find

the vectore,, € OMr that minimizes||Q* (s, )d,, — R(s,)e, || through an efficient tree search [4].

C. Problem Statement

We assume that the MIMO-OFDM receiver has perfect knowle@ipained, e.g., through channel
estimation) of the sampldd(s,,) forn € £ C {0,1,..., N—1}, with || > L+1, from whichH(s,,) can
be obtained at any data-carrying tones D by interpolatingH(s) ~ (0, L). In the special cas® C €&,
interpolation ofH(s) is not necessary. We next formulate the problem statemefuduging on ZF-based
detectors, requiring QR decomposition of the MIMO-OFDM rhal matriced(s,,). The problem state-
ment for the MMSE case is analogous with QR decompositiotacep by MMSE-QR decomposition.

The MIMO-OFDM receiver needs to compute QR fact@sés,,) and R(s,,) of H(s,) for all data-
carrying tonesn € D. A straightforward approach to solving this problem cotssf first interpolat-
ing H(s) to obtainH(s,,) at the tones: € D and then performing QR decomposition on a per-tone
basis. This method will henceforth be callbdite-force per-tone QR decompositicihe interpolation-
based QR decomposition algorithms presented in this papanativated by the following observations.
First, performing QR decomposition on &d x M matrix requiresO(M?) arithmetic operations [17],
whereas the number of arithmetic operations involved innating one sample of ai/ x M LP matrix
by interpolation is proportional to the number of matrix réag M/2, as interpolation of an LP matrix is
performed entrywise. This comparison suggests that we rgjrofundamental savings in computational
complexity by replacing QR decomposition by interpolati®econd, consider a flat-fading channel, so
that L = 0 and hencéd(s,) = Hy foralln =0,1,..., N — 1. In this case, a single QR decomposition

H, = QR yields QR factors oft(s,,) for all data-carrying tones € D. A question that now arises
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naturally is whether fol. > 0 QR factorsQ(s,) andR(s, ), n € D, can be obtained from a smaller set
of QR factors through interpolation. We will see that thevasis in the affirmative and will, moreover,
demonstrate that interpolation-based QR decompositigarithms can yield significant computational
complexity savings over brute-force per-tone QR decontiposifor a wide range of values of the
parametersMr, Mg, L, N, and D, which will be referred to aghe system parametethroughout
the paper. The key to formulating interpolation-based QRod®osition algorithms that realize these
complexity savings are results on QR decomposition of LPrioes recently reported in [7] and briefly

reviewed in the next section.

IV. QR DECOMPOSITION OFLP MATRICES

We consider & x M LP matrixA(s) ~ (V1,Va2), s € U, with P > M, and QR factor€(s) andR(s)
of A(s). In [7], it is shown that althougl®(s) andR(s) are, in general, not LP matrices, there exists
a mappingM that transformsQ(s) and R(s) into corresponding LP matriceQ(s) and R(s). This
mapping constitutes the basis for the formulation of inddapon-based QR decomposition algorithms
for MIMO-OFDM systems.

We review the mappingU by considering QR factors oA (sg) for a givensy € U. In order to keep
the notation compact, we omit the dependence of all involgedntities onsy. In the following, qx
andr, denote thekth column ofQ and thekth row of R, respectively k = 1,2,..., M). We start by

defining the auxiliary variablea, as
Ap 2 AR, k=1,2,....M (3)
with Ay £ 1. Next, we introduce the vectors
ar = Ag—1 Rl s, k=1,2,....M (4)
I, = Apo1 R, 1y, k=1,2,....M (5)
and define the mapping! : (Q,R) — (Q,R) throughQ £ [q; @2 --- qu] andR 2 [T #2 ... #1]7.
In the following, we denote the ordered column rankfoby K. For K > 0 andk =1,2,..., K, we
can computey;, andr;, from q, andr,, respectively, according to
ar = (D1 Rl ) aw (6)
r, = (Ap—1 [R]k,k)_lfk (7)

whereA;_; [R]; ;. is obtained from the entries on the main diagonaRofs

Rl k) k=1
A1 [R],, = IRl (8)

\/[R]k—m—l[f{]k,k, k=23,... K.
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Theinverse mapping\!—! : (Q,R) — (Q, R) corresponds to the following procedure:

1) If K >0, fork=1,2,..., K, compute the scaling fact¢\,_ [R]M)—1 using (8) and scal€y,
andf! according to (6) and (7), respectively.

2) If 0< K < M, computeQg 1,y andRjg 1 1'}; by performing QR decomposition o1, —
Q1 xRy and construcR< LM — [0 R

3) If K =0, computeQ andR by performing QR decomposition oA.

We note that the nonuniqueness of QR decomposition in thefas M has the following consequence.
Given QR factor€); andR; of A, the application of the mappin§yt to (Q1, R;) followed by application
of the inverse mapping/~—' yields matrice€Q, andR, that may not be equal €@, andR,, respectively.
However,Q- and R, will be QR factors ofA in the sense of Definition 1.

The following theorem, proven in [7], paves the way for thenfalation of interpolation-based QR de-

composition algorithms.

Theorem 8. Given A : U — CP*M with P > M, such thatA(s) ~ (Vi, V5) with maximum degree
V = V1 + V,. The functions\,(s), qx(s), andr,(s), obtained by applying the mappingt as in (3)—(5)
to QR factorsQ(s) andR(s) of A(s) for all s € U, satisfy the following properties:

1) Ag(s) ~ (kV,EkV)

2) qi(s) ~ ((k=1)V + WV, (k =1V +V3)

3) Ey(s) ~ (kV,kV).

We emphasize that Theorem 8 applies to any QR factors acgptdiDefinition 1 and is therefore not
affected by the nonuniqueness of QR decomposition arisitigei rank-deficient case. Finally, we mention
that Theorem 8, with the definitions aff and M ! given above, carries over, in a straightforward fashion,

to the case of regularized QR decomposition.

V. APPLICATION TOMIMO-OFDM

We are now ready to show how the results on QR decompositionPofmatrices reviewed in the
previous section lead to algorithms that exploit the poiyied nature of the MIMO channel transfer
function H(s) ~ (0, L) to perform efficient interpolation-based computation of @Rtors of H(s,,),
for all data-carrying tones € D, given knowledge ofH(s,,) at the tones: € £. We note that the
algorithms presented in this section are based on geneeipwoiation according to Definition 7. Specific

interpolation methods will be discussed in Section VIII.
!Note that forK < M, the inverse mapping/1~* requires explicit knowledge oA x y1,1.

December 20, 2010 DRAFT



10

In the algorithms presented below, interpolation involNesse points and target points on that
correspond to OFDM tones indexed by integers taken from étg®1,..., N — 1}. For a given set
X C {0,1,...,N — 1} of OFDM tones, we defineS(X) £ {s, : n € X} to denote the set of
corresponding points ai. With this definition in place, we start by summarizing thetbrtorce approach

described in Section IlI-C.

Algorithm I: Brute-force per-tone QR decomposition
1) InterpolateH(s) from S(€) to S(D).
2) For eachn € D, perform QR decomposition cH(s,,) to obtainQ(s,) andR(s,,).

It is obvious that for largeb = | D|, performing QR decomposition on a per-tone basis will taaiigh
computational complexity. However, in the practicallyensnt casd. <« D the OFDM system effectively
highly oversamples the MIMO channel transfer function, Isat H(s,,) changes slowly across. This
observation, combined with the results of [7] summarize&dttion IV, constitutes the basis for a new
class of algorithms that perform QR decomposition at a smathber of tones and obtain the remaining
QR factors through interpolation. More specifically, thesibadea of interpolation-based QR decompo-
sition is as follows. By applying Theorem 8 to thdr x My LP matrix H(s) ~ (0, L), we obtain
ar(s) ~ ((k—1)L,kL) andt(s) ~ (kL,kL) for k =1,2,..., Mp. In order to simplify the exposition,

in the remainder of the paper we considg(s) as satisfyingx(s) ~ (kL,kL). The resulting statements
Qi (s),r,(s) ~ (kL, kL), k=1,2,...,Mrp 9)

imply that bothq(s) and £, (s) can be interpolated from at lea8kL + 1 base points, and that,
as a consequence off = Vo, = kL, the corresponding interpolation matrices are real-\thlUeor
k=1,2,..., Mr, the interpolation-based algorithms to be presented cteepys,,) andzr, (s, ), through
QR decomposition followed by application of the mappifg at a subset of OFDM tones of cardinality
at leaskL +1, then interpolatey; (s) andr,(s) to obtaingy(s,) andr,(s,) at the remaining tones, and
finally apply the inverse mapping{~! at these tones. In the following, the s&sC {0,1,...,N —1},
with Z,_; C 7 and B, £ || > 2kL + 1 (k = 1,2,..., Mr), contain the indices corresponding to the
OFDM tones chosen as base points. For completeness, we dgfa@. Specific choices of the sefg
will be discussed in detail in Section VIII.

We start with a conceptually simple algorithm for intergma-based QR decomposition, derived
from the observation that the/; statements in (9) can be unified into the single stater@gny, R(s) ~
(ML, MrL). This implies that we can interpola@(s) andR(s) from a single set of base points of

cardinality By;,.. The corresponding algorithm can be formulated as follows:
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Algorithm II: Single interpolation step

1) InterpolateH(s) from S(€) to S(Zas,. ).

2) For eachn € 7y, perform QR decomposition oH(s,,) to obtainQ(s,) andR(s,,).
3) For eachn € Ty, apply M : (Q(sn), R(sn)) — (Q(sn), R(sn)).

4) InterpolateQ(s) andR(s) from S(Zys,) to S(D\Zyr,).

5) For eachn € D\Zyy,, apply M~ : (Q(s,), R(s,)) — (Q(sn), R(sn)).

This formulation of Algorithm Il assumes thdf(s,) has full rank for alln € D\Zps,., which
allows to perform all inverse mappingst~! in Step 5 using (6)—(8) only. If, however, for a given
n € D\Iur,, H(s,) is rank-deficient with ordered column radk < Mr, we haveQc .1 1z, (sn) = 0
and R¥+1:Mr (s ) = 0. Hence, according to the definition g#~! in Section IV, Q11 ., (s,) and
RA+1LMr (5,) must be computed through QR decompositiodiof 11,4z, (sn) — Q1. (sn) R 17, (5n)
for K > 0 or of H(s,) for K = 0. This, in turn, requiredH x 1 7, (s,) to be obtained by interpo-
lating Hg 11 17, (s) from S(&) to the single target poing, in an additional step. For simplicity of
exposition, in the remainder of the paper we will assume Higt,) has full rank for alln € D.

Departing from Algorithm Il, which interpolate§(s) andr,(s) from B, base points, we next
present a more sophisticated algorithm that involves pat@tion of qx(s) andr,(s) from By < By,
base pointsX = 1,2,..., My), in agreement with (9). The resulting Algorithm Ill consisof My
iterations. In the first iteration, the toness Z; are considered. At each of these tones, QR decomposition
is performed orH(s,,), resulting inQ(s,) andR(s,,), which are then mapped t@Q(s,), R(s,)) by
applying M. Next, q;(s) and r,(s) are interpolated from the tones € Z; to the remaining tones
n € D\Z;. In thekth iteration ¢ = 2,3, ..., Mr), the tones € Z;;\Z;_, are considered. At each of these
tones,Qy x—1(s,) andR“#~1(s,,) are obtainetiby applyingM ="' to (Q; x_1(sn), R"*1(s,)), already
known from the previous iterations, whereas the submat@gns, (s») andRZ:%ﬁ(sn) are obtained by
performing QR decomposition on the matdX;, s, (s,) — Ql,k_l(sn)Ri:]}}Tl(sn), in accordance with
Proposition 4, an®R* M (s,,) is given, fork > 1, by [0 Rﬁ;%ﬁ(sn)]- Next, the submatrice®y, ar, (sn)
and R*Mr (s,,) are computed by applying to (Qg s, (sn), R®M7(s,,)). Since the sample§y(s,)
andr,(s,) are now known at all tones € Zj, qi(s) andt,(s) can be interpolated from the tones
n € I to the remaining tones € D\Z;, thereby completing théth iteration. After M iterations, we
know Q(s,,) andR(s,) at all tonesn € D, as well asQ(s,,) andR(s,) at the tones: € Zy,,. The last
step consists of applying4~! to (Q(s,),R(s,)) to obtainQ(s,) andR(s,) at the remaining tones

n € D\Zy,.. The algorithm is formulated as follows:

2The mappingM and its inverseM ! are defined on submatrices 6f(s,) andR(s,,) according to (3)—(8).
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Algorithm Ill: Multiple interpolation steps

1) Setk — 1.

2) InterpolateHy, ys,.(s) from S(&) to S(Zy\Zk—1).

3) If k = 1, go to Step 5. Otherwise, for each ¢ Z;\Z,_;, apply M1
(Ql,k—l(sn%f{l’k_l(sn)) = (Ql,k—l(sn)aRl’k_l(SN))'

4) For eachn € Z;\Zj,—1, overwrite Hy, 1z, (sn) by Hyaz, (sn) — Qui—1(s0)Ry 57 (sn)-

5) For eachh € Z;\Z;_;, perform QR decomposition dHy, s, (s,) to obtainQy, s, (s,) and
Rﬁ:%ﬁ(sn), and, ifk > 1, constructR*Mr(s,) = [0 sz%ﬂsn)]-

6) For eachn € T;\Zj_1, apply M : (Qp.az, (80), RFMT (5,)) = (Qpoazy (80), RFMT (s,,)).

7) Interpolateqy(s) andr,(s) from S(Zx) to S(D\Zy).

8) If k = My, proceed to the next step. Otherwise, ket k£ + 1 and go back to Step 2.

9) For eachn € D\Zyy,., apply M~ : (Q(sn), R(s4)) — (Q(sn), R(sn)).

In comparison to Algorithm II, Algorithm Il performs QR dempositions on increasingly smaller
matrices. The corresponding computational complexityrggare, however, traded against an increase
in interpolation effort and the computational overheadasged with Step 4, which will be referred to
as thereduction stepn what follows. Moreover, the complexity of applyintt and M ~! differs for the
two algorithms. A detailed complexity analysis providedtlie next section will show that, depending
on the system parameters, Algorithm Ill can exhibit smatiemplexity than Algorithm II.

So far, we assumed that the matricEss,),n € &£, are known perfectly. Under this assumption,
Algorithms |-l produce the same result, namely QR fact@sés,,) and R(s,,) of H(s,),n € D.

If the matricesH(s,,),n € &, are perturbed by additive noise due to, e.g., channel astm errors,
interpolation ofH(s) (as performed in Step 1 of Algorithms | and Il, or in Step 2 ofgddithm 111)

will produce samples of an LP matrid(s) ~ (0, L) that is not equal td(s) but is the same in all
three algorithms (cf. the discussion at the end of Sectie@ |h the context of a generic LR(s)).
Consequently, Algorithms Il will yield QR factors of thez\atricesﬂ(sn),n € D, and are hence all
equally affected by channel estimation errors. The requiésented in the remainder of the paper are
based on the assumption of perfect knowledg&igs,,),n € £.

We note that the conditiong| > L+ 1 and B, > 2kL + 1, k = 1,2,..., My, guarantee that all
instances of interpolation in Algorithms I-Ill can be cadiout exactly. In Section 1X-A, we will argue
that savings in the complexity of the interpolation-baségbidthms can be obtained by performing,
instead, inexact interpolation from a small number of basiatp. Although this leads to errors in the
algorithm outputQ(s,) andR(s,), n € D, the numerical results in Section IX-A demonstrate thajdar

complexity savings can be obtained without significantigrdeding MIMO-OFDM detection performance.
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Throughout Sections VI-VIIl, we assume exact interpolatimless specified otherwise.

VI. COMPLEXITY ANALYSIS

We are next interested in assessing under which circunesathe interpolation-based Algorithms I
and Il offer computational complexity savings over the teriorce approach in Algorithm I. To this
end, we propose a simple computational complexity metapresentative of VLSI circuit complexity
as quantified by the product of chip area and processing detay We note that other important
aspects of VLSI design, including, e.g., wordwidth reguiests, memory access strategies, and datapath
architecture, are not accounted for in our analysis. Nbedstss, the proposed metric is indicative of
the complexity of Algorithms I-lll and allows to quantify ehimpact of the system parameters on the
potential savings of interpolation-based QR decompasiiger brute-force per-tone QR decomposition. In
the remainder of the paper, unless explicitly stated ottservihe terncomplexityrefers to computational

complexity according to the metric defined in Section VI-Adve

A. Complexity Metric

In the VLSI implementation of a given algorithm, a wide rangfetrade-offs between silicon are&
and processing delay can, in general, be realized [22]. Parallel processingaestd at the expense of
a largerA, whereas resource sharing redugeat the expense of a larger However, the corresponding
circuit transformations typically do not affect the areglay productAr significantly. For this reason,
the area-delay product is considered a relevant indicdtatgmrithm complexity [22]. In the definition
of the specific complexity metric that will be used subsedlyewe only take into account the arithmetic
operations with a significant impact oftr. More specifically, we divide the operations underlying the
algorithms under consideration into three classes, namemultiplications, ii) divisions and square
roots, and iii) additions and subtractions. Class iii) gpiens will not be counted as they typically have
a significantly lower VLSI circuit complexity than Class iha@ Class ii) operations.

In all algorithms presented in this paper, the number of £idsoperations is significantly larger
than the number of Class ii) operatichddoreover, the data dependences in these algorithms allow
Class i) operations and Class ii) operations to be perforimgdrallel. In an architecture where Class i)
operations are carried out sequentially, a single Clagp@yation can be distributed over the time required

by multiple Class i) operations, as demonstrated in [23kr€&fore, the arithmetical unit in charge of the

3We assume that division of al/-dimensional vecton by a scalary, such as the divisions in (6) or (7), is implemented by
first computing the single divisiof £ 1/« and then multiplying thé\/ entries ofa by 3, at the cost of one Class ii) operation

and M Class i) operations, respectively.
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Class ii) operation can be designed to consume a significamhbller silicon area than the multiplier
carrying out the Class i) operations. Based on this observatve conclude that the impact of Class ii)
operation on the overall complexity can be neglected.

Within Class i), we distinguish betweefull multiplications (i.e., multiplications of two variable
operands) andonstant multiplicationgi.e., multiplications of a variable operand by a constgerand).
We define the cost of a full multiplication as the unit of cortagional complexity. We do not distinguish
between real-valued full multiplications and complexwed full multiplications, as we assume that
both are performed by multipliers designed to process twalbke complex-valued operands. The fact,
discussed in detail in Section VIII-A, that a constant nplitiation can be implemented in VLSI at
significantly smaller cost than a full multiplication, wile accounted for through a weighting factor

smaller than one.

B. Per-Tone Complexity of Individual Computational Tasks

In order to simplify the notation, in the remainder of thisctten we drop the dependence of all
quantities ons,,. We furthermore introduce the auxiliary variable

(k — 1)k

JkéMRk‘i’MTk_ 2 ’

k=1,2,..., My

which specifies the maximum total number of nonzero entrigQ;i andRY* and, hence, also iQLk
andR'* in accordance with the fact th& andR are upper triangular.

Interpolation: We quantify the complexity of interpolating an LP to one &trgoint through an
equivalent ofep full multiplications. The dependence of interpolation qaexity on the underlying VLSI
implementation and on the number of base points is assunmeitacorporated intop. Specific strategies
for efficient interpolation along with the correspondindues ofcp are presented in Section VIII. Since
interpolation of an LP matrix is performed entrywise, thendexity of interpolatingHy, »s,.(s) to one
target point is given b;cﬁ;ﬁT 2 Mgr(M7 — k+ 1)ep (k = 1,2,..., Mr). Similarly, interpolation of
Q(s) andR(s) to one target point has complexi%QR £ Ju,cp and the complexity of interpolating
ar(s) andr,(s) to one target point is given bgfszif £ (Mg + Mr—k+1ep (k=1,2,..., Mr).

QR decompositionTo keep our discussion independent of the QR decompositethad used, we
denote the cost of performing QR decomposition onMdp x k matrix by e ** (k = 1,2,..., My).

Specific expressions foangRXk will only be required in the numerical complexity analysisSection IX.

“In the context of the interpolation-based algorithms cdersid in this paper, all operands that dependHis) are assumed
to be variable. The coefficients of interpolation filtergy.eare treated as constant operands. For a detailed dmtuss the
difference between full multiplications and constant niplitations, we refer to Section VIII-A.
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Mapping M: We denote the overall cost of mappit@ s, R®7) to (Qar,, RFM7) (k =
1,2,..., My) by c’j\;lMT. In the casek = 1, application of the mapping\ requires computation of
[R]11, R, [R]2,[R]22, [RIZ,[R3,,... T4 [R]?,, at the cost o2 My — 1 full multiplications. This
step yields both the scaling factors, 1 [R]y x, £ = 1,2,..., My, and the diagonal entries at.
Now, the first column ofQ is equal to the first column dfl and is hence obtained at zero complexity.
The remaining entries of) and the entries oR above its main diagonal are obtained by scaling the
corresponding entries & andR according to (4) and (5), respectively, which requivgs, — Mr — M
full multiplications. Hence, we obtaialMMT = Jy, — Mr+ Mr — 1. Next, we consider the cage> 1,
which only occurs in Step 3 of Algorithm 1ll, wher&,_; = [R]k—l,k—l is already available from
the previous iteration which involves interpolation ©f ;(s). The application of the mapping first
requires computation by [Rlyr, Ag—1[RJ? 0 Ap—1[RI ,[Rler1ha1,-- 5 Dpoa 15 [R]?;, at the
cost of 2(M7 — k + 1) full multiplications. Then, the entries @, 5., and the entries oR*Mr ghove
the main diagonal oR are scaled according to (4) and (5), which requifges. — Jx—1 — (M7 —k+1)
full multiplications. In summary, we obtaidly,"" = Jar, — Jy_1 + My —k+1for k=2,3,..., Mr.

Inverse mappingV{~!: We denote the overall cost of mappit@; i, R"*) to (Q; x, R*) (k =
1,2,...,M7) by cjf .. SinceAq = 1 and [R]1; = [R]?, by first computing([R];,1)/? and then its
inverse, we can obtain botflR];; and the scaling factofA¢[R];1)~! = 1/[R];1 at the cost of one
square root operation and one division. Foe= 2,3, ..., k, the scaling factoréAx _1[R]s )~ can be
obtained according to (8) by computifidR] 1 & 1[R]x &)~ '/2, at the cost ok —1 full multiplications,
k — 1 square root operations, ahd- 1 divisions. The entries 0Q; ; and the remaining entries &'*
on and above the main diagonalRfare obtained by scaling the corresponding entrieég); andR*

according to (6) and (7), respectively, at the cosfpf 1 full multiplications. Since we neglect the impact

of square root operations and divisions on complexity, V\Iaiotzc}\;’f,l =Jpyt+k—2fork=1,2,..., Myp.
Reduction stepSince matrix subtraction has negligible complexity, forieeg k € {2,3,..., M7},

the complexity associated with the computatiordf . — QLk_lR,lﬁ”jw_Tl, denoted bwffc), is given by

the complexity associated with the multiplication of thér x (k — 1) matrix Qq ,—; by the (k — 1) x
(Mr — k+ 1) matrix Ry5 !, Hence, we obtain{ly = Mp(k — 1)(My — k +1) for k =2,3,..., Mr.

C. Total Complexity of Algorithms I-Ill

The contribution of a given computational task to the ovecalmplexity of a given algorithm is
obtained by multiplying the corresponding per-tone comipfe computed in the previous section, by
the number of relevant tones. For simplicity of expositionthe ensuing analysis we restrict ourselves
to the case where the sets of OFDM tones used as base poisfy §atC Z, C ... C 7y, C D
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Table |
TOTAL COMPLEXITY ASSOCIATED WITH THE INDIVIDUAL COMPUTATIONAL TASKS

Computational task Symbdl Algorithm | Algorithm 11 Algorithm 111
M
Interpolation of H(s) cprA  Dogh” B by Biogy +2LY ey’
k=
M~ ?
; A 5 . _ . _ (k)
Interpolation ofQ(s) andR(s) cpar.a 0 (D — Buyr)epar Z(D Bi) Cipas
k=1 My
QR decomposition cora  DegE M Bapcdg Mt By M + 2Lch{F§*X(A’{T’k“)
k=
2]\17*
Mapping M CMA 0 By e Bieyt™ + 2Ly
Mo k=2
Inverse mapping\{—* CMTA 0 (D = Bar )y s 20 el St + (D = By )yt
k=
? M~
Reduction Cred,A 0 0 2L Z cffg
k=2

2The index A is a placeholder for the algorithm number (1, H,lid).

and|Zy| = By = 2kL+1 (k = 1,2,...,Mr), and consequently alsi@;\Zy_1| = 2L and |D\Zx| =
D—-2kL—1(k=1,2,..., My). With the total complexity of the individual tasks sumnzad in Table I,
the complexity associated with Algorithms I-Ill is obtathas

C) = apH, + coRr,|

Ch = cpa,il + CpaRr,i T QR CMl F Ca-1 (10)

Cwni = apa,m + Cpar,m T CQRIN T Cat i+ Ca-1 i+ Cred - (11)

D. Complexity Comparisons

In the following, we identify conditions on the system pageders and on the interpolation cegt that
guarantee that Algorithms Il and Il exhibit smaller comyptg than Algorithm |. We start by comparing

Algorithms | and Il and note that

My (M- 1
C,—Cy = <D _ BMT> <C(JS/IF§xMT . C}\,/IJV{? _ #Cuﬁ) _ BMTC}\,AMT. (12)
Hence, ifcp satisfies
N 2(cg{§'XMT - c}\’/t]\i[f)
cp < Cipmaxll = (13)

M~y (MT + 1)
then there exists ®,,;, such thatCy, < C, for D > D, i.e., Algorithm Il exhibits a lower complexity

than Algorithm | for a sufficiently high number of data-cany tonesD. Moreover, forcp < ¢ipmax.iis
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increasingB), reduces’) — Cy. If the inequality (13) is met, as a consequencesqf, = 2MrL + 1,
(12) implies that for increasind, and with all other parameters fixed, Algorithm Il exhibits alhar
savings. For largeeg ™7, again with all other parameters fixed, Algorithm Il exhiblarger savings.

In order to compare Algorithms Il and Ill, we start from (10)da(11) and rewrite”), — Cy; as

Cii = O = Acgr+ Acp -1 + Acpygr — Credi (14)
where we have introducachR =S CQR,Il — CQR, Il AC./VLMA £ CM,II + CM-111l — CM,IIl — CM—11II» and
ACIP,HQR £ cpa + CpQR — CPHII ~ Cp@R.i - From the results in Table | we get

My
Acgr =21y (chfrr — cgpx M=) (15)
k=2

which is positive since, obviouslygs M > cgﬁ*x(MT_k“) (k = 2,3,..., Mr). Furthermore, again

employing the results in Table |, straightforward calcoias yield

My
2
Acppqr = —2L ) k(k = )ep = —Z LMy (M7 — 1)cp (16)
k=2
Acpm-r = (B = By ) (Mg — 1) = =2L (Mg — 1) (Mr — 1). (17)

We observe that (14)—(17), along with the expressiondfar) in Table I, imply thatC), — Cj, does
not depend onD and is proportional td.. Moreover, it follows from (14) and (16) that,, < C) is
equivalent tocip < ¢jpmax,in With

o 2 Acqr + Acp M- — Cred, i
,max, -
FLMp(M3Z — 1)

We note that the right-hand side (RHS) of (18) depends saolely/; and Mg, since Acgr, Aca -1,

(18)

andcreq,n are proportional ta.. Hence, ifAcor + Acaq a1 — credin > 0 @and forep sufficiently small,
Algorithm Il has lower complexity than Algorithm 1.

We conclude this section with a comment on the memory remdgrgs of Algorithms | and Il. If
interpolation ofQ(s) andR(s) in Step 4 of Algorithm Il is implemented such that the sam@&€)(s)
and R(s) at the By, base points are overwritten by samples@fs) and R(s) at By, out of the
D — By, target points, Algorithms | and 1l exhibit comparable meynoequirements. We can therefore
conclude that the complexity savings of interpolationdth®R decomposition over brute-force per-tone

QR decomposition need not come at the cost of increased meamguirements.

VIl. THE MMSE CASE

In this section, we modify the QR decomposition algorithnesatibed in Section V to obtain corre-

sponding algorithms that compute the MMSE-QR decompasiticthe channel matriceH(s,,),n € D.
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We recall from Section IV that the definitions 8#t and M1, as well as the statement of Theorem 8,
carry over to regularized QR decomposition. Moreover, MM3E decomposition was defined in Sec-
tion IlI-B to be a special case of regularized QR decompmsitiWith this insight, the modification of
Algorithms | and Il to the MMSE case is straightforward anohgly amounts to replacing, in Step 2 of
both algorithms, QR decomposition by MMSE-QR decompasitithe resulting algorithms are referred
to as Algorithm I-MMSE and Algorithm 1I-MMSE, respectively

We next discuss the extension of Algorithm Ill to the MMSE &€aés a starting point, we con-
sider the straightforward approach of applying Algoriththtdb the MMSE-augmented channel matrix
H(s,) £ [HT(s,) Mzo,Iy, )" to produceQ(s,) and R(s,) for all n € D. In the following,
we denote byé(sn) and R(s,,) the matrices resulting from the application of the mappibg to
(Q(sn),R(sn)). We observe that the straightforward approach under cerwtidn is inefficient, since
we are only interested in obtainin@(s,) = Q"= (s,) andR(s,) for all n € D. Consequently, we
would like to avoid computing the last/; rows of Q(s,) at as many tones as possible. Now, the
reduction step (i.e., Step 4) in thgh iteration of Algorithm IIl requires knowledge d®; ;_1(s,) at
the tonesn € Zx\Zx—1 (k = 2,3,..., Mr). Hence, at the tones € Z;\Z,_; we must compute all
Mg+ Mp rows Ole,k—l(Sn) anyway. In contrast, at the tonesc D\Z,,, we can restrict interpolation
and inverse mapping t@(s,) = Q"M (s,) andR(s,). With the definitionsd(s,) £ Q' (s,) and

Ak (sn) 2 QMattMatMr (o y |k — 1,2 ... My, the resulting algorithm can be formulated as follows:

Algorithm [lI-MMSE

1) Setk — 1.
2) InterpolateHy, yz, (s) from S(&) to S(Zp\Zk—1).
3) For eachn € Z;\Zj,_1, constructHy, ar, (sn) = ([HY (s,) Mrowlas, |7 ke
4 If ¥ = 1, go to Step 6. Otherwise, for each ¢ Z;\Z,_;, apply M~!
(Qui—1(50), R (5)) = (Qui—1(50), RM 1 (s0)).
5) For eachn € T,,\Zj,_1, overwrite i, yz, (sn) by iy ar, (5n) — Qup—1(sn)Ry57) (5n)-
6) For eachn € Z;\Z;_1, perform QR decomposition oBl} s, (s,) to obtain Qy iz, (s»)
and Ry (s,), and, ifk > 1, constructR*Mr (s,) = [0 Ry} (s,) -
7) For eachn € Ty\Tj_1, apply M : (Qi.az, (5n), REM7 (5,)) 1 (Que.nsy (5n), REMT (s,,)).
8) Interpolateqy(s) andr,(s) from S(Zy) to S(D\Zy).
9) If k= My, proceed to Step 11. Otherwise, interpolgigs) from S(Zy) to S(Zas, \Zx)-
10) Setk < k + 1 and go back to Step 2.
11) For each € D\Zy;,, apply M1 : (Q(s,),R(sn)) — (Q(sn),R(sy)).
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For an in-depth discussion of the computational complexitiigorithms I-MMSE through 11I-MMSE,

the interested reader is referred to [24].

VIIl. EFFICIENT INTERPOLATION

Throughout this section, we consider interpolation of aegenLPa(s) ~ (V1, Va) of maximum degree
V =V; 4+ V, from the set of base points to the set of base point, where|5| = B and|7| =1T. We
note that in the context of interpolation in MIMO-OFDM systs, relevant for the algorithms presented
in this paper, all base points and all target points cornadgo OFDM tones. Therefore, in the following

we assume thaB and7 satisfy the condition
BUTQ {80731,...781\[_1}. (19)

The complexity analysis in Section VI showed that interfiolabased QR decomposition algorithms
yield savings over the brute-force approach only if theripdéation complexity per target poinfp is
sufficiently small. Straightforward interpolation ef s), which corresponds to direct evaluation of (2),
is performed by carrying out the multiplication of tHéx B interpolation matrixTB' by the B x 1
vectorag. The corresponding complexity is given ByB, which results ircp = B full multiplications per
target point. Since exact interpolation @f(s) ~ (kL,kL) andz,(s) ~ (kL,kL) requiresB > 2kL + 1
(k=1,2,..., M), with the worst case being > 2Mr L+ 1, this complexity may be too high to realize
savings over brute-force QR decomposition. In this secti@present interpolation methods characterized
by significantly smaller values af. As demonstrated by the numerical results in Section 1)§ tan
then lead to significant savings of the interpolation-baapgdroaches for QR decomposition over the

brute-force approach.

A. Interpolation with Dedicated Multipliers

As already noted, the interpolation matriRB' is a function of B, 7, V; and V;, but not of the
realization of the LRu(s) to be interpolated. Hence, as longas7, V; andV, do not change, multiple
LPs can be interpolated using the same interpolation mak#X, which can be computed off-line.
This observation leads to the first strategy for efficienélipoblation, which consists of carrying out the
matrix-vector product TB)az in (2) throughT B constant multiplications, where the entries BB’
are constant and the entries &f are variable.

In the context of VLSI implementation, full multiplicatisnand constant multiplications differ signifi-
cantly. Whereas a full multiplication must be performed bylamultiplier which processes two variable

operands, in a constant multiplication, the fact that onthefoperands, and more specifically its binary
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representation, is known a priori, can be exploited to parfbinary logic simplifications that result in
a drastically lower circuit complexity [22]. The resultimgultiplier, called adedicated multipliefin the
following, consumes only a fraction of the silicon area (dote 1/9, as reported in [14] for complex-
valued dedicated multipliers) required by a full multipliand exhibits the same processing delay.

In the remainder of the papeyc andyr denote the complexity associated with a constant muléplic
tion of a complex-valued variable operand by a complexa@land by a real-valued constant coefficient,
respectively. Sincd'B' is real-valued foil; = V5 and complex-valued otherwise, interpolation through

constant multiplications with dedicated multipliers hascnplexity per target point of
xrB, Vi=V;

xcB, Vi # Va.

By leaving a cautionary implementation margin from the fed&irt value of 1/9 reported in [14],

ap =

we assume thatc = 1/4 in the remainder of the paper. Since the multiplication 06 teomplex-
valued numbers requires (assuming straightforward imefaation) four real-valued multiplications,
whereas multiplying a real-valued number by a complexeglnumber requires only two real-valued

multiplications, we henceforth assume that = xc/2, which leads toyg = 1/8.

B. Equidistant Base Points

In the following, we say that the points in a sfig,ui,...,ux—1} C U are equidistant on/ if
up = uge??™ /K for k =1,2,..., K —1. So far, we discussed interpolationdafs) ~ (V1, V) for generic
setsB and 7. In the remainder of Section VIII we will, however, focus dretfollowing special case.
Given integersB, R > 1, we consider the set d® base pointd3 = {b;, = e2mk/B | = 0,1,...,B— 1}
and the set of” = (R — 1)B target pointsT = {t(g_1)p4,r_1 = bpe? ™/ BB .k =0,1,... . B—1,r =
1,2,...,R —1}. We note that both thé3 points in3 and theRB points inBU T = {e/27/(EB) .| =
0,1,...,RB—1} are equidistant ob. Hence, interpolation of(s) from B to 7 essentially amounts to
an R-fold increase in the sampling rate ofs) on ¢/, and will therefore be termedpsampling ofa(s)
from B equidistant base points by a factor &fin the remainder of the paper. The corresponding base
point matrix B and target point matrif' are constructed according to their definitions in Sectie@.l|
We note that forB > V + 1, B satisfiesB”B = BIp and hencéB' = (1/B)B".

We recall that the number of OFDM tonés is typically a power of two. Therefore, in order to
have RB equidistant points o& while satisfying the condition (19), botB and R are constrained to
be powers of two. In order to satisfy the conditih> V' + 1 mandated by the requirement of exact

interpolation, we se3 = 2/1eg(V+1I,
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Finally, we mention that samples afs) at a set of equidistant base pointsi@rcan be obtained from
samples ofi(s) at any set of base points @h (of cardinality at least” + 1) through an additional inter-

polation step. This idea is discussed in detail in the cari€MIMO-OFDM channel estimation in [14].

C. Interpolation by FIR Filtering

This section discusses upsamplingadf) from B equidistant base points by a factor Bfby finite

impulse response (FIR) filtering. We mention that an altéradFT-based approach is presented in [24].

Proposition 9. In the context of upsampling from® equidistant base points by a factor &, the

B(R — 1) x B interpolation matrixTB satisfies the following properties:

1) There exists ariR — 1) x B matrix Fy such thatTB' can be written as
TB' = [(F,Cp)T (F,CH)T -+ (FoCH)T T (20)
with the B x B circulant matrix

Cp=

0 Ip
1 0 |

2) The matrixFy, as implicitly defined in (20), satisfies
[Folrit1 = [Fol hor.p_k r=1,2,...,R—1, k=0,1,...,B—1.

Proof: SinceB' = (1/B)B”, the entries ofTBT are given by

Vo
1 _iomy RUE=K)tr
[TB]h(r-1)sris1 = B ZV e T2 (21)
V=—V1
for k,k’ =0,1,...,B—1andr =1,2,..., R — 1. The two properties are now established as follows:

1) The RHS of (21) remains unchanged upon replagiagd4’ by (k+1) mod B and(k¥’+1) mod B,
respectively. Hence, for a givenc {1,2,..., R — 1}, the B x B matrix obtained by stacking the
rows indexed byr, (R — 1) +r,...,(B —1)(R — 1) 4 r (in this order) of TB' is circulant. By
taking Fy, to consist of the lask — 1 rows of TB, and usingCZ = I, along with the fact that
for b € Z, the muItipIicationFOCljB corresponds to circularly shifting the columns B§ to the
right by bmod B positions, we obtain (20).

2) The entries offy are obtained by setting = B — 1 in (21) and are given by

Vs
1 . r— /41
[Folrgrr = % Y e =12, R-1, K =01,...,B-L
’U:—V1
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Hence, forr =1,2,...,R—1andk’ =0,1,...,B — 1, we obtain

Folr—r.p-1 = % Zvé IV % ZVZ: eI [Folr k1. i
v=—V; v=—V;

We note that Property 1 in Proposition 9 implies that the ixatector multiplication(TB')az in (2)
can be carried out through the application ®f— 1 FIR filters. Specifically, forr = 1,2,..., R — 1,
the entriesr,r + R,...,r + (B — 1)R of ay can be obtained by computing the circular convolution
of ag with the impulse response of length contained in the'th row of F. By allocating B dedicated
multipliers per FIR filter (one per impulse response tap),weeild need a total of R — 1) B dedicated
multipliers. We will next see that the complex-conjugatengyetry in the rows offy, formulated as
Property 2 in Proposition 9, allows to reduce the number afickted multipliers and the interpolation
complexity by a factor of two.

In the following, we assume that the multiplications of aiahle complex-valued operand by a constant
~ € C and by its complex conjugatg" can be carried out using the same dedicated multiplier, lzetdhe
resulting complexity is comparable to the complexity of tiplication by~ alone. This is justified as the
multiplication by~* compared to the multiplication by, involves the same four underlying real-valued
multiplications and only requires two additional sign flipghich have significantly smaller complexity
than the real-valued multiplications. Thus, we can perfaraitiplication by the coefficient®], .1 and
Folp—r.B—k = [FO];EJ~C+1 through a single dedicated multiplier € 1,2,...,R/2,k =0,1,...,B/2-1).
This resource sharing approach leads to

8B, Vi=VWV
ap=3 ° (22)

¥B, Vi#W

So far, we assumed thats) is interpolated from the3 = 2/1°e(V+11 pase points i3, resulting in¢p
as in (22). We will next show that the interpolation compigxian be further reduced by using a smaller
number of base point8’ < B. Interpolation will be exact as long as the conditiBh> V' +1 is satisfied.

As done above, we assume knowledge of Bh@amplesu(s), s € B. In the following, however, we
require that for a given target point, the samplex(t,.) is obtained by interpolation from onl3’ base
points, picked from the3 elements of3 as a function oft,. For simplicity of exposition, we assume
that B’ is even, and for every. € 7 we choose thés’ elements of3 that are located closest tp on /.
We next show that the resulting interpolationafs) from B to 7 can be performed by FIR filtering.

In the following, we defineB disjoint subsets/;, of 7 (satisfying Uf;ol 7, = 7T) and consider the
corresponding subset; of B, defined such that for all points ify,, the B’ closest base points are given

by the elements o8B, (k = 0,1,...,B — 1). We next show that the interpolation matrix corresponding
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to interpolation ofa(s) from By, to 7, is independent ok. To this end, we first consider the set of target
points 7y £ {t(B=1)(R—1)4r—1: 7 = 1,2,..., R — 1}, containing theR — 1 target points located ot
between the base poinkg,_; andb,. The subset of3 containing theB’ points that are closest to every
point in 7y is given by By £ {bo,b1,---,bp /2, bp_prj2,bp_p /241, ---,bp-1}. Interpolation ofa(s)
from B, to 7, involves the base point matriB,, the target point matrixI'y, and the interpolation
matrix TOB(T), constructed as described in Section II-C. Next, foe= 1,2,...,B — 1, we denote by
B, and 7, the sets obtained by multiplying all elements 8§ and 7, respectively, bye/27/5. We
note that7, contains theR — 1 target points located ot between the base pointg_; and b, and
that B;, is the subset ofs containing theB’ points that are closest to every pointZp. With the unitary
matrix S;, £ diag((e/2™F/BYV1 (e727k/BYVi=1  (e327k/B)=V2) "interpolation ofa(s) from By to T;
involves the base point matriB;, = ByS;, with pseudoinversBT = S,;lB(T), the target point matrix
T = TSk, and the interpolation matrisl‘kBT = TOSkS,ngg = TOB(T) (k=1,2,...,B—1). Hence,
the interpolation matrix is independentfand is the same as in the interpolationud$) from B, to 7.
Now, interpolation ofa(s) from B to 7', with the constraint that the sample«fs) at every target point
is computed only from the samplesafs) at the B’ closest base points, amounts to performing interpola-
tion of a(s) from By to 7 forall k = 0,1, ..., B—1, and can be written in a single equatiorsgs= Fag.
Here, the(R — 1) B x B interpolation matrixF' is equal to the RHS of (20), with thg? — 1) x B matrix

FO:[(TOBB)LB//z 0 (TOBJ(r))B—B//Z—i-l,B] (23)

which contains an all-zero submatrix of dimensigh — 1) x (B — B’). Hence,F satisfies Property 1
of Proposition 9, withF( given by (23). In addition, we state without proof thHBg in (23) satisfies
Property 2 of Proposition 9. We can therefore conclude thtatpolation from the closedt’ base points
maintains the structural properties of interpolation fralnB base points and, as above, can be performed
by FIR filtering usingR — 1 filters with dedicated multipliers that exploit the conjtgaymmetry in the
rows of Fy. Since the rows oF in (23) containB — B’ zeros, theR — 1 impulse responses now have
length B’, and we obtain

cp = ¥B, =W (24)

B, Vi # Va.

IX. NUMERICAL RESULTS

The results presented so far do not depend on a specific QRngestion method. For the numerical
complexity comparisons presented in this section, we beaore specific and assume UT-based QR de-

composition performed through Givens rotations and coatei rotation digital computer (CORDIC)
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operations [25], [26], which is the method of choice in VL8&liglementations [23], [27]. For a generic
matrix A € CP”*M with P > M, it was shown in [23] that the complexity of UT-based QR deposition
of A, as required in Algorithms I-11l, is given byb 3 = 2(P2M +PM?)— M3 —L(P?— P+ M?+ M)
and that the complexity of UT-based MMSE-QR decompositibA pas required in Algorithms I-MMSE
and II-MMSE, is give by ¢ il og £ 3(P2M + PM?) — $P? + L P. The results in [23] carry over,
in a straightforward fashion, to UT-based QR decompositibthe augmented matrixkA” oI,,]7, as
required in Algorithm I1I-MMSE, to yieldeo iiumse = cumat.or + 3 PM? + 3 PM.

A. Efficient Interpolation and Performance Degradation

The interpolation complexity (24) of the approach desdatiibeSection VIII-C can be further reduced by
choosing the number of base poisto be smaller than the number of coefficiebts- 1 that determine
an LP of maximum degre¥E. This violates the conditio®’ > V +1 for exact interpolation and therefore
leads to a systematic interpolation error. In the followimge evaluate the resulting trade-off between
interpolation complexity and interpolation accuracy ire thontext of an interpolation-based MIMO-
OFDM receiver, as we gradually redué®, and hence also,p as in (24), in the interpolation of(s)
andR(s) as required by Algorithm II. The corresponding analysistherinterpolation ofy, (s) andr? (s),
k=1,2,..., My, asrequired by Algorithm Ill, is more involved and does niel¢ any additional insights
into the trade-off under consideration. In order to simypiife simulation setup, we interpolate the channel
transfer function matrixi(s) exactly and perform inexact interpolation only on the LP nicat Q(s)
and R(s). The numerical results presented in the following demaiestthat for Algorithm Il to have
smaller complexity than Algorithm |, setting’ to a value smaller thaiv + 1, and hence accepting a
systematic error in the interpolation €§(s) and R(s), may be necessary. On the other hand, we will
also see that the resulting degradation in detection peegoce, in terms of both coded and uncoded bit
error rate (BER), can be negligible even for valuesBfthat are significantly smaller thaii + 1.

In the following, we consider a MIMO-OFDM system with = N = 512, Mr = 4, and either
My = 2 or My = 4, operating over a frequency-selective channel with- 15. The data symbols are
drawn from a 16-QAM constellation. In the coded case, a tadf convolutional code with constraint
length 7 and generator polynomiald33,171,] is used. The receiver performs maximume-likelihood
detection through hard-output sphere decoding. Our eaudt obtained through Monte Carlo simulation,
where averaging is performed over the channel impulse ressptapsHy, Hy,...,Hy, assumed to

have entries i.i.dCN(0,1/(L + 1)). This assumption on the channel statistics, along with trezage

®In [23], the last term in the expression fqﬁ,\jS”E’_QR was erroneously specified as(1/2)P.
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Table Il
SIMULATION PARAMETERS

Mr =2 Mr =4 Interpolation of
B’ Cp(A.R) ay/C | B Cp(A.R) Cy/C Q(s) and f{(s)
64 4 0.82 128 8 1.52 exact
32 2 0.55 32 2 0.71 inexact
16 1 0.41 24 1.5 0.64 inexact
12 0.75 0.37 16 1 0.57 inexact
8 0.5 0.34 8 0.5 0.51 inexact

Common to all simulations are the parametérs= N = 512, L = 15, Mr = 4, andcpu = 2.

transmit power being given bi[c/c,] = 1 and the noise variance?

W

implies that the per-antenna
receive signal-to-noise ratio (SNR) igo2. The receiver employs either Algorithm | or Algorithm Il to
computeQ(s,) andR(s,,) at all tones. Interpolation is assumed to be performed tirdeR filtering
with dedicated multipliers. As discussed in Section VII|\¥#e assume that a multiplication of a variable
operand by a complex-valued and by a real-valued FIR filteffimdent has a complexity corresponding to
xc = 1/4 and toxg = 1/8 full multiplications, respectively. In Step 1 of both algbms, the LP matrix
H(s) ~ (0, L) with maximum degred” = L is interpolated exactly fronB = L + 1 = 16 equidistant
base points by FIR filtering. Sinde = V; # V, = L, the corresponding interpolation complexity per
target point is obtained from (22) apx = (L + 1)xc/2 = 2. In Step 4 of Algorithm 1l, we interpolate
Q(s) ~ (MpL,MrL) andR(s) ~ (ML, MrL), with maximum degred/ = 2MrL, through FIR
filtering from B’ < B = 2[1ee(V+1]1 pase points. With/; = V, = My L, the corresponding interpolation
complexity per target point is obtained from (24) &SR £ xrB’/2. Here, the FIR filters for exact
interpolation derived in Section VIII-C are replaced by FiRers of lengthB’ < V + 1 obtained using
an ad-hoc method described in [24]. Finally, since at theesonc D\Z,,,, the matricesQ(s,,) and
R(s,) are computed through mapping, interpolation, and inveragpimg in Algorithm Il rather than
directly from H(s,) as in Algorithm |, in fixed-point implementations Algorithih can be expected
to suffer more from error propagation than Algorithm I. Irder to compensate for this, Algorithm Il
may require the use of larger wordwidths, implying an insest its overall complexity’},. This aspect
will not be taken into account in the following. In the nunuadi results shown below, we ensure that
systematic errors in the interpolation f(s) and R (s), arising fromB’ being smaller tharV’ + 1, are
the sole source of detection performance degradation g uiuble-precision floating-point arithmetic.
Table Il summarizes the simulation parameters, along wighcbrresponding values of the interpolation

complexity per target poirttiF,’(Q R) and the resulting algorithm complexity rati&y /C;, which quantifies
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(@) Mr =2 and (b) Mt = 4. The results corresponding to exact QR decomposition arédqed for reference.

the savings of Algorithm Il over Algorithm I. We note that fdW; = 4, exact interpolation results
in Cy > C). Hence, in this case inexact interpolation is necessarybtaio complexity savings of
Algorithm [l over Algorithm I. In contrast, forMp = 2, Algorithm 1l exhibits lower complexity than
Algorithm | even in the case of exact interpolation.

Figs. 1a and 1b show the resulting BER performanceiigr = 2 and My = 4, respectively, both
for the coded and the uncoded case. For uncoded transmessébimexact interpolation, we observe an
error floor at high SNR which rises with decreasiBf For M = 2 and uncoded transmission, we can
see in Fig. 1a and Table Il, respectively, that an interpatafilter length of B’ = 8 results in negligible
performance loss for SNR values of up to 18 dB, and yields dexity savings of Algorithm Il over
Algorithm | of 66%. ChoosingB’ = 16 yields close-to-optimum performance for SNR values of up to
24 dB and complexity savings of 59%. Fbfr = 4 and uncoded transmission, Fig. 1b and Table Il show
that the interpolation filter length can be shortened fr&h= 128 to B’ = 8, leading to complexity
savings of Algorithm Il over Algorithm | of 49%, at virtuallyjo performance loss in the SNR range
of up to 21 dB. SettingB’ = 32 results in a performance loss, compared to exact inteiipoladf less
than 1 dB at BER= 10~% and in complexity savings of 29%. In the coded case, bothMgr = 2
and M7 = 4, we can see in Figs. 1la and 1b that the BER curves for Algorithfior all values of B
under consideration, essentially overlap with the cowadmng curves for Algorithm | for BERs down
to 1075 This observation suggests that the use of channel codiogsato employ significantly shorter
FIR filters for the interpolation 0€(s) andR(s) (corresponding to a smallef, oz and hence to a lower

Cyi, which in turn implies higher savings of Algorithm Il overddrithm 1) than in the uncoded case. We
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Figure 2. Complexity of Algorithms Il and Il as percentagecomplexity of Algorithm | for D = 500, and L = 15, (a)
including and (b) excluding the complexity of interpolatiof H(s).

conclude that in the practically relevant case of codedstrassion, complexity savings of Algorithm Il
over Algorithm | can be obtained at negligible detectionfmenance loss. Further numerical results
indicate that the latter statement continues to hold evethénpresence of channel estimation errors
induced by training-based estimation of the channel medii€(s,,), n € £. Specifically, here we applied

the method described in [28] (in the context of flat-fadingM) on a per-tone basis.

B. Algorithm Complexity Comparisons

The discussion in Section VIII and the numerical resultsécti®n IX-A demonstrate that for the case
of upsampling from equidistant base points, small valuessofan be achieved and inexact interpolation
does not necessarily induce a significant detection petgoom loss. Therefore, in the following, we
assume that for alt = 1,2,..., My, the setZ;, containing indices of OFDM tones used as base points,
is such thatS(Z;,) containsBy, = |Z;,| = 2/1°#:(2kL+D1 points that are equidistant & and we setjp = 2.

For D = 500, L = 15, and different values of\/i; and Mg, Fig. 2a shows the complexity of
Algorithms Il and Ill as percentage of the complexity of Aigbm I. We observe savings of Algorithms |l
and Il over Algorithm | as high as 48% and 53%, respectiielyithermore, we can see that Algorithm |l
exhibits a lower complexity than Algorithm Il in all consigal configurations. This is a consequence of
the small value o€, and of Algorithm Ill, with respect to Algorithm I, tradingpiver QR decomposition
cost against higher interpolation cost. Moreover, we olsénat the savings of Algorithms Il and Il
over Algorithm | are more pronounced for largkefr — Mr. For the special case = D implying i) that

H(s,) is known at all data-carrying tones< D and ii) that Algorithm | simplifies to the computation
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of D QR decompositions, Fig. 2b shows that the relative savihgégmrithms Il and Il over Algorithm |
are somewhat reduced, but still significant.

For D = 500, M7 = Mg, and different values of, Fig. 3a shows the complexity of Algorithms II-
MMSE and IlI-MMSE as percentage of the complexity of Algbnit I-MMSE. The fact (which also
carries over to the savings of Algorithms Il and Ill over Afgbm [) that the savings of Algorithms
[I-MMSE and 1lI-MMSE over Algorithm I-MMSE are more pronoued for smaller values oL is a
consequence of the number of base poiBfsbeing an increasing function di. In Fig. 3a, we can see
that despite the low interpolation complexity implied &y = 2, Algorithm 1II-MMSE exhibits a higher
complexity than Algorithm 1I-MMSE for all considered valsief M = My andLL. This is a consequence
of the fact that the overall complexity of the UT-based QRaiepositions required in Step 6 of Algo-
rithm 1II-MMSE can be larger than the overall complexity tietUT-based MMSE-QR decompositions
required in Step 2 of Algorithm [I-MMSE. We mention that if (W5E-)QR decomposition is carried out
by GS-based algorithms rather than by UT-based algorititggrithm 11I-MMSE can exhibit a lower
complexity than Algorithm II-MMSE for a nonempty range oflwes of the parameterf®/; = Mpr andL.

Finally, Fig. 3b shows the absolute complexity of Algorithrk-1Il and I-MMSE through 11II-MMSE
as a function ofD, for My = 3, Mr = 4, and L = 15. We observe that the complexity savings of
Algorithms Il and 1l over Algorithm | and the savings of Algthms [I-MMSE and 1lII-MMSE over
Algorithm I-MMSE grow linearly in D. This behavior was predicted for Algorithms | and Il by the
analysis in Section VI-D, where we showed tlfat— C), is an affine function ofD and is positive for

small ¢p and largeD.

December 20, 2010 DRAFT



29

X. CONCLUDING REMARKS

We demonstrated that, for a wide range of system parametergyroposed interpolation-based QR
decomposition algorithms can yield significant complexsayings over brute-force per-tone QR decom-
position, provided that the interpolation complexity idfwiently small. Nevertheless, siné&irL + 1
base points are required for the interpolationQ(s) andR(s), and since the worst cage= Lcp must
be accounted for, these algorithms can only be appliéd i# 20\ Lcp+ 1. Consequently, the proposed
algorithms are not suitable for use in, e.g., the IEEE 802 4thndard and some of the configurations
of the IEEE 802.16e standard, as the corresponding chameetampling ratiosV/Lcp are not large
enough. This motivates further development of the methadpgsed in this paper, with the goal of
reducing the number of base points required for interpmialiased QR decomposition. Specifically,
open problems include i) determining whether the mappirigcan be replaced by a different mapping
producing LP matrices with maximum degree smaller thafy- L, and ii) investigating whether methods
for interpolation under unitarity constraints [29], appulito the interpolation of)(s), would allow to

further reduce the number of base points required.
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