Deep convolutional neural networks based on semi-discrete frames

Authors

Thomas Wiatowski and Helmut Bölcskei

Reference

Proc. of IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 1212-1216, June 2015.

[BibTeX, LaTeX, and HTML Reference]

Abstract

Deep convolutional neural networks have led to breakthrough results in practical feature extraction applications. The mathematical analysis of these networks was pioneered by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on identical semi-discrete wavelet frames in each network layer, and proved translation-invariance as well as deformation stability of the resulting feature extractor. The purpose of this paper is to develop Mallat’s theory further by allowing for different and, most importantly, general semi-discrete frames (such as, e.g., Gabor frames, wavelets, curvelets, shearlets, ridgelets) in distinct network layers. This allows to extract wider classes of features than point singularities resolved by the wavelet transform. Our generalized feature extractor is proven to be translation-invariant, and we develop deformation stability results for a larger class of deformations than those considered by Mallat. For Mallat’s wavelet-based feature extractor, we get rid of a number of technical conditions. The mathematical engine behind our results is continuous frame theory, which allows us to completely detach the invariance and deformation stability proofs from the particular algebraic structure of the underlying frames.

Keywords

Feature extraction, classification, deep convolutional neural networks, scattering networks, frame theory


Download this document:

 

Copyright Notice: © 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.