Multi-neuron unleashes expressivity of ReLU networks under convex relaxation

Authors

Yuhao Mao, Yani Zhang, and Martin Vechev

Reference

arxiv:2410.06816, Oct. 2024.

[BibTeX, LaTeX, and HTML Reference]

Abstract

Neural work certification has established itself as a crucial tool for ensuring the robustness of neural networks. Certification methods typically rely on convex relaxations of the feasible output set to provide sound bounds. However, complete certification requires exact bounds, which strongly limits the expressivity of ReLU networks: even for the simple “max” function in $R^2$, there does not exist a ReLU network that expresses this function and can be exactly bounded by single-neuron relaxation methods. This raises the question whether there exists a convex relaxation that can provide exact bounds for general continuous piecewise linear functions in $R^n$. In this work, we answer this question affirmatively by showing that (layer-wise) multi-neuron relaxation provides complete certification for general ReLU networks. Based on this novel result, we show that the expressivity of ReLU networks is no longer limited under multi-neuron relaxation. To the best of our knowledge, this is the first positive result on the completeness of convex relaxations, shedding light on the practice of certified robustness.


Download this document:

 

Copyright Notice: © 2024 Y. Mao, Y. Zhang, and M. Vechev.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.