

Examination on Mathematics of Information August 12, 2024

- Do not turn this page before the official start of the exam.
- The problem statements consist of 7 pages including this page. Please verify that you have received all 7 pages.
- Throughout the problem statements there are references to definitions and theorems in the Handout, indicated by e.g. Definition H1 and Theorem H2.

Problem 1 (25 points)

We denote the standard orthonormal basis of the space $\ell^2(\mathbb{N})$ by $\{\delta_k\}_{k\in\mathbb{N}}$, i.e., for $k\in\mathbb{N}$ the sequence $\delta_k[\cdot] \in \ell^2(\mathbb{N})$ is given by

$$
\delta_k[j] = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{otherwise} \end{cases}, \quad j \in \mathbb{N}.
$$

Throughout this problem we fix a Hilbert space H . We will need the following definition.

Definition 1. *A set of elements* $\{g_k\}_{k\in\mathbb{N}}$, $g_k \in \mathcal{H}$, is called a Riesz basis for H if there exists a *bijective bounded linear operator* $U: \ell^2(\mathbb{N}) \to \mathcal{H}$ such that $g_k = U \delta_k$, for $k \in \mathbb{N}$.

(a) (13 points) Let $\{f_k\}_{k\in\mathbb{N}}$ be an exact frame for H and consider the linear operator T

$$
T: \ell^2(\mathbb{N}) \to \mathcal{H}
$$

$$
T: c[\cdot] \to \sum_{k=1}^{\infty} c[k] f_k.
$$

- i. (5 points) Show that T is bijective.
- ii. (5 points) Show that T is bounded, i.e., there is a constant M such that for all $c[\cdot] \in \ell^2(\mathbb{N})$ we have $||Tc||_{\mathcal{H}} \leq M||c||_{\ell^2(\mathbb{N})}$.
- iii. (3 points) Show that $\{f_k\}_{k\in\mathbb{N}}$ is a Riesz basis for \mathcal{H} .
- (b) (8 points) Let $\{f_k\}_{k\in\mathbb{N}}$ be a Riesz basis for H. Show that $\{f_k\}_{k\in\mathbb{N}}$ is an exact frame for H.
- (c) (4 points) Let $\{f_k\}_{k\in\mathbb{N}}$ be a Riesz basis for H. Show that there are constants A, B, with $0 < A \leq B < \infty$, such that for every collection of scalars $\{c_k\}_{k \in \mathcal{J}}$, with $\mathcal{J} \subset \mathbb{N}$ finite, it holds that

$$
A\sum_{k\in\mathcal{J}}|c_k|^2 \le \left\|\sum_{k\in\mathcal{J}}c_kf_k\right\|_{\mathcal{H}}^2 \le B\sum_{k\in\mathcal{J}}|c_k|^2.
$$

Problem 2 (25 points)

In this problem, we consider a collection $\mathcal F$ of probability distributions on [0, 1]. For simplicity, we assume that F consists only of distributions that have a density and can be characterized by a cumulative distribution function (cdf) $f : [0,1] \rightarrow [0,1]$ which, by definition, is right-continuous ($\lim_{x\to a^+} f(x) = f(a)$, for all $a \in [0,1]$), monotonically non-decreasing, and satisfies $f(0) = 0$, $f(1) = 1$. We study the metric entropy of F under the L^2 -norm, i.e., the L^2 -distance between the corresponding cdfs given by

$$
||f - g||_2 := \left(\int_0^1 |f(x) - g(x)|^2 dx\right)^{1/2}.
$$

The purpose of this problem is to establish that¹

$$
\log_2 N(\epsilon; \mathcal{F}, ||\cdot||_2) \asymp \epsilon^{-1}.
$$
 (1)

To this end, fix $\epsilon_0 = 1/36$ and assume, throughout the remainder of this problem, that $\epsilon\in(0,\epsilon_0).$ Now, set $^2\epsilon':=\left(2\lceil\epsilon^{-1}/2\rceil-3\right)^{-1}$, $n:=1/\epsilon'-1=2\lceil\epsilon^{-1}/2\rceil-4$, and construct the following collection of cdfs:

$$
\mathcal{U} := \{ f_{\eta} : [0,1] \to [0,1] \mid \eta = \{ \eta_k \}_{k=1}^n \text{ with } \eta_k \in \{0,1\}, \text{ for } k = 1,2,\ldots,n \}, \qquad (2)
$$

where f_{η} is a step function defined as (an example of f_{η} is given in Figure 1)

$$
f_{\eta}(x) = \begin{cases} 0, & x \in [0, \epsilon'), \\ (k - 1 + \eta_k)\epsilon', & x \in [k\epsilon', (k + 1)\epsilon'), & 1 \le k \le n, \\ 1, & x = (n + 1)\epsilon' = 1. \end{cases}
$$
(3)

Figure 1: The blue lines represent $f_n(x)$.

¹The notation $f(\epsilon) \approx g(\epsilon)$ expresses that there exist c_1, c_2 , with $0 < c_1 \leq c_2$, and $\epsilon_0 > 0$ such that $c_1g(\epsilon) \le f(\epsilon) \le c_2g(\epsilon)$, for all $\epsilon \in (0, \epsilon_0)$.

²For every $x \in \mathbb{R}$, $[x] := \min\{n \in \mathbb{Z} \mid n \geq x\}$. You can use, without proof, that $x \leq [x] < x + 1$.

- (a) (2 points) Verify that every function $f_{\eta} \in \mathcal{U}$ is right-continuous, monotonically non-decreasing, and satisfies $f_{\eta}(0) = 0$, $f_{\eta}(1) = 1$, i.e., f_{η} is, indeed, a cdf.
- (b) (3 points) Given $f_{\eta}, f_{\eta'} \in \mathcal{U}$, define the Hamming distance³

$$
d_h(f_\eta, f_{\eta'}) = \text{card}(\{k : \eta_k \neq \eta'_k, 1 \leq k \leq n\}).\tag{4}
$$

Prove that $d_h(f_\eta, f_{\eta'}) > \lceil n/32 \rceil$ implies $||f_\eta - f_{\eta'}||_2 > \epsilon'/8$. *Hint:* Note that $\epsilon \in (0, \epsilon_0)$ *implies* $\epsilon' \in (0, 1/2)$ *.*

(c) (3 points) For each $f_{\eta} \in \mathcal{U}$, prove that

$$
\operatorname{card}\left(\{f_{\eta'} \in \mathcal{U} : d_h(f_{\eta}, f_{\eta'}) \le \lceil n/32 \rceil\}\right) \le 2^{n/2}.\tag{5}
$$

Hint: Without proof, use the fact that $\sum_{k=0}^d{n \choose k}$ $\binom{n}{k} \leq \left(\frac{en}{d}\right)$ $\left(\frac{en}{d}\right)^d$, for $d \leq n$, and that $32e < 2^8$. *In addition, note that* $\epsilon \in (0, \epsilon_0)$ *implies* $n > 32$ *.*

(d) (4 points) Prove that for all ϵ_1, ϵ_2 , with $0 < \epsilon_1 < \epsilon_2$, it holds that

$$
M(\epsilon_1; \mathcal{F}, \left\| \cdot \right\|_2) \ge M(\epsilon_2; \mathcal{F}, \left\| \cdot \right\|_2). \tag{6}
$$

(e) (6 points) Combine the results from subproblems (a) to (d) to show that there exists a $c_1 > 0$ such that

$$
\log_2 M(\epsilon; \mathcal{F}, ||\cdot||_2) \ge c_1 \epsilon^{-1}.
$$
 (7)

Hint: Construct an ($\frac{\epsilon'}{8}$) $\frac{\epsilon'}{8}$)-packing based on (a)–(c), note that $\epsilon' = (2\lceil \epsilon^{-1}/2 \rceil - 3)^{-1} > \epsilon$, *and apply the result in (d).*

(f) (4 points) You can assume, without giving a proof, that

 $\exists p > 0, q > 1$ such that $N(\epsilon; \mathcal{F}, \|\cdot\|_2) \leq 2^{p/\epsilon} \cdot N(q\epsilon; \mathcal{F}, \|\cdot\|_2)$, for all $\epsilon > 0$. (8)

Now, based on (8), show that there exists a $c_2 > 0$ such that

$$
\log_2 N(\epsilon; \mathcal{F}, ||\cdot||_2) \le c_2 \epsilon^{-1}.
$$
\n(9)

Hint: Prove that $N(\epsilon_1; \mathcal{F}, \lVert \cdot \rVert_2) = 1$, for all $\epsilon_1 \geq 1$.

(g) (3 points) Finally, combining the results in subproblems (e) and (f), derive the scaling behavior (1).

Hint: State the relation between $M(2\epsilon; \mathcal{F}, \lVert \cdot \rVert_2)$, $M(\epsilon; \mathcal{F}, \lVert \cdot \rVert_2)$, and $N(\epsilon; \mathcal{F}, \lVert \cdot \rVert_2)$ from *class, and use this relation (without proof).*

 3 card (A) denotes the cardinality of the set A.

Problem 3 (30 points)

Let N be the set of positive integers, and fix $n \in \mathbb{N}$. The empirical Rademacher complexity of a class $\mathcal F$ of functions $f\colon \mathcal X\subset \mathbb R^d\to \mathbb R$ is defined as

$$
\mathcal{R}\left(\mathcal{F}\left(x_{1}^{n}\right)/n\right) := \frac{1}{n}\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}}\left|\sum_{i=1}^{n}\varepsilon_{i}f(x_{i})\right|\right],
$$

where $x_1^n := \{x_1, \ldots, x_n\} \subseteq \mathcal{X}$ is fixed and $\{\varepsilon_i\}_{i=1}^n$ is a sequence of Rademacher random variables, i.e., ε_i takes the values +1 and -1, each with probability 1/2, for $i \in$ $\{1, \ldots, n\}.$

(a) (5 points) With the convex hull of $\mathcal F$ given by

$$
conv(\mathcal{F}) \coloneqq \left\{ x \mapsto \sum_{j=1}^{N} \alpha_j f_j(x) \colon N \in \mathbb{N}, \alpha_j \ge 0, f_j \in \mathcal{F}, j \in \{1, \dots, N\}, \sum_{j=1}^{N} \alpha_j = 1 \right\},\
$$

show that $\mathcal{R}(\mathcal{F}(x_1^n)/n) = \mathcal{R}((\text{conv}(\mathcal{F}))(x_1^n)/n).$ *Hint: You may use the following fact without proof:*

$$
\sup_{(\alpha_1,\dots,\alpha_N)\in\Delta_N} \left| \sum_{j=1}^N \alpha_j v_j \right| = \max_{j\in\{1,\dots,N\}} |v_j|, \quad \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix} \in \mathbb{R}^N,
$$

 $where \Delta_N \coloneqq \{(\alpha_1, \ldots, \alpha_N) \in [0,1]^d \colon \sum_{j=1}^N \alpha_j = 1\}.$

(b) (8 points) Let now $\mathcal{X} \coloneqq [-M, M]^d$, with $M > 0$, and consider the function class $\mathcal{F} \coloneqq \{x \mapsto \langle x, w \rangle \colon w \in \mathbb{R}^d, \|w\|_1 \leq B\}$, where $B > 0$ is a constant. Show that

$$
\mathcal{R}\left(\mathcal{F}\left(x_{1}^{n}\right)/n\right) \leq BM\sqrt{\frac{2\log(2d)}{n}}
$$

.

Here, and throughout Problem 3, $log(·)$ is to the base e . *Hint: Use the result in subproblem (a) together with Lemmata H4 and H8.*

(c) (9 points) Let $\rho(y) := \max\{0, y\}$, $y \in \mathbb{R}$, $\mathcal{X} := [-M, M]^d$, $M > 0$, and consider the function class $\mathcal{F} \coloneqq \{x \mapsto \sum_{j=1}^J u_j \rho(\langle x, v_j \rangle) \colon u_j \in \mathbb{R} \setminus \{0\}, v_j \in \mathbb{R}^d \setminus \{0\}, j \in$ $\{1, \ldots, J\}, \sum_{j=1}^{J} |u_j| \|v_j\|_1 \leq C\}$, where $J \in \mathbb{N}$ and $C > 0$. Show that

$$
\mathcal{R}\left(\mathcal{F}\left(x_1^n\right)/n\right) \le 2CM\sqrt{\frac{2\log(2d)}{n}}.
$$

Hint: Use the result in subproblem (b) and Lemma H5.

(d) (8 points) Consider again the setup of subproblem (b), i.e., the function class \mathcal{F} :=

 $\{x \mapsto \langle x, w \rangle : w \in \mathbb{R}^d, ||w||_1 \leq B\}$, $B > 0$, and $\mathcal{X} := [-M, M]^d$, $M > 0$. Further, let $\sigma: \mathbb{R} \to \mathbb{R}$ be *L*-Lipschitz with $\sigma(0) = 0$. For $i \in \mathbb{N}$, define recursively the function class

$$
\mathcal{F}_i := \left\{ x \mapsto \sum_{j=1}^{J_i} w_j^i \sigma(f_j(x)) \colon f_j \in \mathcal{F}_{i-1}, j \in \{1, \dots, J_i\}, w^i \in \mathbb{R}^{J_i}, ||w^i||_1 \leq B_i \right\},\
$$

where $J_i \in \mathbb{N}, B_i > 0$, and set $\mathcal{F}_0 \coloneqq \mathcal{F}$. Show that

$$
\mathcal{R}\left(\mathcal{F}_{K}\left(x_{1}^{n}\right)/n\right) \leq BM\sqrt{\frac{2\log(2d)}{n}}\prod_{i=1}^{K}(2B_{i}L), \quad \text{for some } K \in \mathbb{N}.
$$

Hint: You may use without proof that

$$
\mathcal{R}\left(\left(\mathcal{G}+\mathcal{H}\right)\left(x_1^n\right)/n\right)\leq \mathcal{R}\left(\mathcal{G}\left(x_1^n\right)/n\right)+\mathcal{R}\left(\mathcal{H}\left(x_1^n\right)/n\right),
$$

where G and H are function classes and $G + H := \{g + h : g \in G, h \in H\}$. Also note *that you will need to apply the result in subproblem (b).*

Problem 4 (20 points)

Let $m, N \in \mathbb{N}$, $s, t \in \{1, ..., N\}$, and consider the matrix $A \in \mathbb{C}^{m \times N}$. The s-th restricted isometry constant δ_s of A is the smallest $\delta \geq 0$ such that

$$
(1 - \delta) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta) \|x\|_2^2,
$$

for all s -sparse vectors $x \in \mathbb{C}^N$. A vector is said to be s -sparse if it has at most s nonzero entries. The (s, t) -restricted orthogonality constant $\theta_{s,t}$ of A is the smallest $\theta \ge 0$ such that

$$
|\langle Au, Av \rangle| \le \theta ||u||_2 ||v||_2,
$$

for all disjointly supported *s*-sparse and *t*-sparse vectors $u, v \in \mathbb{C}^N$. Prove that

$$
\delta_{ns} \le (n-1)\theta_{s,s} + \delta_s, \quad \text{for } n, s \in \mathbb{N}.
$$