Handout Examination on Mathematics of Information August 12, 2024

Lemma H1. Let \mathcal{H} be a Hilbert space with associated inner product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|_{\mathcal{H}}$. Then, we have

$$||x||_{\mathcal{H}} = \sup_{||g||_{\mathcal{H}}=1} |\langle x, g \rangle|, \qquad \forall x \in \mathcal{H}.$$

Lemma H2. Let $U : \mathcal{H} \to \mathcal{K}$ be a bounded linear operator from a Hilbert space \mathcal{H} into a Hilbert space \mathcal{K} . Then, the operator norm given by

$$|||U||| \coloneqq \sup_{\|x\|_{\mathcal{H}}=1} ||Ux||_{\mathcal{K}}$$

is finite. Furthermore, we have

$$||Ux||_{\mathcal{K}} \le |||U||| ||x||_{\mathcal{H}}, \qquad \forall x \in \mathcal{H}.$$

Lemma H3. Let \mathcal{H} be a Hilbert space and let $U : \ell^2(\mathbb{N}) \to \mathcal{H}$ be a bijective bounded linear operator. Then, we have the following:

- (a) U is invertible and the inverse U^{-1} is a bijective bounded linear operator.
- (b) U^* , i.e., the adjoint of U, is a bijective bounded linear operator.

Lemma H4 (Massart's lemma). Let \mathcal{F} be a finite class of functions $f: \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$. Suppose that there exists a constant C > 0 such that $\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n f(x_i)^2 \leq C^2$, for all $x_1^n \subseteq \mathcal{X}$. Then, it holds that

$$\mathcal{R}\left(\mathcal{F}\left(x_{1}^{n}\right)/n\right) \leq C\sqrt{\frac{2\log(|\mathcal{F}|)}{n}}.$$

Here, $log(\cdot)$ *is to the base e*.

Lemma H5 (Ledoux–Talagrand contraction). Let $\phi : \mathbb{R} \to \mathbb{R}$ be an L-Lipschitz function with $\phi(0) = 0$ and let \mathcal{F} be a class of functions $f : \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$. Let $\phi \circ \mathcal{F} := \{\phi \circ f \mid f \in \mathcal{F}\}$. Then,

 $\mathcal{R}\left(\left(\phi\circ\mathcal{F}\right)\left(x_{1}^{n}\right)/n\right)\leq2L\mathcal{R}\left(\mathcal{F}\left(x_{1}^{n}\right)/n\right).$

Definition H6. Let $d \in \mathbb{N}$ and $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. We define the inner product on \mathbb{K}^d as

$$\langle x, y \rangle \coloneqq \begin{cases} \sum_{i=1}^{d} x_i y_i, & \text{if } \mathbb{K} = \mathbb{R}, \\ \sum_{i=1}^{d} x_i \overline{y_i}, & \text{if } \mathbb{K} = \mathbb{C}, \end{cases} \quad x, y \in \mathbb{K}^d, \end{cases}$$

where \overline{z} denotes complex conjugation. For $p \in [1, \infty)$, the *p*-norm on \mathbb{K}^d is defined as

$$||x||_p \coloneqq \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}, \quad x \in \mathbb{K}^d.$$

The ∞ *-norm on* \mathbb{K}^d *is defined as*

$$||x||_{\infty} \coloneqq \max_{1 \le i \le d} |x_i|, \quad x \in \mathbb{K}^d.$$

Lemma H7. Let $d \in \mathbb{N}$ and $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. It holds that

$$|\langle x, y \rangle| \le ||x||_1 ||y||_{\infty}, \quad x, y \in \mathbb{K}^d.$$

Lemma H8. It holds that

$$\{x \mapsto \langle x, w \rangle \colon w \in \mathbb{R}^d, \|w\|_1 \le 1\} = \operatorname{conv}\left(\left\{x \mapsto \langle x, w \rangle \colon w \in \bigcup_{k=1}^d \{e_k, -e_k\}\right\}\right),\$$

where $\{e_k\}_{k=1}^d$ denotes the standard basis of \mathbb{R}^d , i.e.,

$$(e_k)_j = \begin{cases} 1, & \text{if } k = j, \\ 0, & \text{otherwise,} \end{cases} \quad j,k \in \{1,\ldots,d\}.$$

Definition H9. Let X be a vector space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. An inner product on X is a map $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ such that for all $x, x_1, x_2, y \in X$ and $\lambda \in \mathbb{K}$, the following properties hold:

- (i) $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$,
- (ii) $\langle x, y \rangle = \overline{\langle y, x \rangle}$,
- (iii) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$,
- (iv) $\langle x, x \rangle \geq 0$, with equality if and only if x = 0.

When $\mathbb{K} = \mathbb{R}$ *, the complex conjugation in (ii) is superfluous.*