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Problem 1

(a) i. Let {f̃k}k∈N be the canonical dual frame of {fk}k∈N. By Theorem 1.22 in the
lecture notes we have that every x ∈ H can be represented by

x =
∞∑
k=1

c[k]fk,

where c[k] := ⟨x, f̃k⟩. As {f̃k}k∈N is also a frame, the sequence c[·] is in ℓ2(N).
Thus, T is surjective.

Furthermore, by Theorem 1.37 in the lecture notes, the sequence c[·] is unique.
Thus, T is also injective and hence bijective.

ii. Let A and B, with 0 < A ≤ B < ∞, be the frame bounds of {fk}k∈N and
arbitrarily fix c[·] ∈ ℓ2(N). Now, we calculate

∥Tc∥H =

∥∥∥∥∥
∞∑
k=1

c[k]fk

∥∥∥∥∥
H

Lemma H1
= sup

∥g∥H=1

∣∣∣∣∣⟨g,
∞∑
k=1

c[k]fk⟩

∣∣∣∣∣
= sup

∥g∥H=1

∣∣∣∣∣
∞∑
k=1

c[k]⟨g, fk⟩

∣∣∣∣∣
≤ sup

∥g∥H=1

∞∑
k=1

|c[k]||⟨g, fk⟩|

C.S.
≤ sup

∥g∥H=1

∥c∥ℓ2
(

∞∑
k=1

|⟨g, fk⟩|2
)1/2

frame bound
≤ sup

∥g∥H=1

∥c∥ℓ2
√
B∥g∥H =

√
B∥c∥ℓ2

(1)

As B < ∞, we can hence conclude that T is a bounded operator.
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iii. In the previous subtasks, we established that T : ℓ2(N) → H is a bijective
bounded linear operator. Furthermore, we have

Tδj =
∞∑
k=1

δj[k]fk = fj, ∀j ∈ N.

Therefore, T satisfies the requirements of Definition 1 and {fk}k∈N is thus a
Riesz basis for H.

(b) As {fk}k∈N is a Riesz basis, there exists a bijective bounded linear operator U :

ℓ2(N) → H such that fk = Uδk for k ∈ N. We first show that {fk}k∈N is a frame for
H. To this end, fix x ∈ H arbitrarily and compute

∞∑
k=1

|⟨x, fk⟩|2 =
∞∑
k=1

|⟨x, Uδk⟩|2 =
∞∑
k=1

|⟨U∗x, δk⟩|2 = ∥U∗x∥2ℓ2 , (2)

where in the last equality we used Parseval’s identity. We now bound, using
Lemma H2,

∥U∗x∥2ℓ2 ≤ |||U∗|||2∥x∥2H (3)

and

∥U∗x∥2ℓ2 =
|||(U∗)−1|||2

|||(U∗)−1|||2
∥U∗x∥2ℓ2 ≥

1

|||(U∗)−1|||2
∥(U∗)−1U∗x∥2H =

1

|||(U∗)−1|||2
∥x∥2H.

(4)
As x was arbitrary, it follows from (3) and (4) that {fk}k∈N is a frame with frame
bounds A = 1

|||(U∗)−1|||2 and B = |||U∗|||2. The fact that |||U∗||| and |||(U∗)−1||| are finite
follows from Lemma H3 together with Lemma H2.

We next show that {fk}k∈N is exact. To this end, we fix m ∈ N arbitrarily and show
that {fk}k ̸=m is incomplete. First, note that by Lemma H3, (U−1)∗ is a bijective
bounded linear operator. Since δm ̸= 0 we thus have x := (U−1)∗δm ̸= 0.

Now we compute

⟨x, fk⟩ = ⟨(U−1)∗δm, fk⟩ = ⟨δm, U−1fk⟩ = ⟨δm, δk⟩ = 0, for all k ̸= m, (5)

which establishes that {fk}k ̸=m is incomplete and hence {fk}k∈N must be exact.
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(c) We compute

1

|||U−1|||2
∑
k∈J

|ck|2 =
1

|||U−1|||2

∥∥∥∥∥∑
k∈J

ckδk

∥∥∥∥∥
2

ℓ2

=
1

|||U−1|||2

∥∥∥∥∥U−1U
∑
k∈J

ckδk

∥∥∥∥∥
2

ℓ2

≤ |||U−1|||2

|||U−1|||2

∥∥∥∥∥∑
k∈J

ckUδk

∥∥∥∥∥
2

H

=

∥∥∥∥∥∑
k∈J

ckfk

∥∥∥∥∥
2

H

=

∥∥∥∥∥U∑
k∈J

ckδk

∥∥∥∥∥
2

H

≤ |||U |||2
∥∥∥∥∥∑
k∈J

ckδk

∥∥∥∥∥
2

ℓ2

= |||U |||2
∑
k∈J

|ck|2.

Thus, the equation from the problem statement is satisfied with A = 1
|||U−1|||2 and

B = |||U |||2.
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Problem 2

(a) It follows directly from the definition of fη that fη is right-continuous and satisfies
fη(0) = 0, fη(1) = 1. To verify that fη is monotonically non-decreasing, we check
the following

• (1− 1 + ηk)ϵ
′ ≥ 0;

• (k + 1− 1 + ηk+1)ϵ
′ = (k − 1 + ηk)ϵ

′ + (1 + ηk+1 − ηk)ϵ
′ ≥ (k − 1 + ηk)ϵ

′;

• (n− 1 + ηn)ϵ
′ ≤ nϵ′ < (n+ 1)ϵ′ = 1.

(b) dh(fη, fη′) > ⌈n/32⌉ implies that |fη(x)− fη′(x)| = ϵ′ on more than ⌈n/32⌉ disjoint
intervals of length ϵ′, which yields

∥fη − fη′∥22 =
∫ 1

0

|fη (x)− fη′ (x)|2dx

=
n∑

k=0

∫ (k+1)ϵ′

kϵ′
|fη (x)− fη′ (x)|2dx

> ⌈n/32⌉ · (ϵ′)2 · ϵ′

≥ (ϵ′)−1 − 1

32
· (ϵ′)2 · ϵ′

>
(ϵ′)2

64
,

where the last inequality follows from (ϵ′)−1 − 1 > (ϵ′)−1/2 as ϵ′ ∈ (0, 1/2).

(c) We note that fη1 ∈ {fη′ ∈ U : dh(fη, fη′) ≤ ⌈n/32⌉} =: Pη if and only if η1 differs
from η in at most ⌈n/32⌉ out of n entries, which means that Pη contains no more
than

⌈n/32⌉∑
k=0

(
n

k

)
≤
(

en

⌈n/32⌉

)⌈n/32⌉

≤ (32e)n/32+1

≤
(
28
)n/32+1

= 2n/4+8

< 2n/2

elements, where the last inequality follows from n > 32.

(d) Pick a maximal ϵ′-packing
{
f1, f2, . . . , fM(ϵ′;F ,∥·∥2)

}
. Then, we have,

for all i, j s.t. 1 ≤ i < j ≤ M(ϵ′;F , ∥·∥2), it holds that ∥fi − fj∥2 > ϵ′ > ϵ,

which implies that
{
f1, f2, . . . , fM(ϵ′;F ,∥·∥2)

}
is also an ϵ-packing. Based on the def-
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inition of the packing number, we can conclude that

M(ϵ;F , ∥·∥2) ≥ M(ϵ′;F , ∥·∥2).

(e) Arbitrarily pick a cdf f1 from U1 := U . Based on subproblem (c), the set

P1 := {fη′ ∈ U : dh(f1, fη′) ≤ ⌈n/32⌉}

contains no more than 2n/2 elements. We then arbitrarily pick a cumulative dis-
tribution function (cdf) f2 from

U2 := U1 \ P1 = U \ P1

and note that card (U2) ≥ 2n−2n/2. It is guaranteed that dh(f2, f1) > ⌈n/32⌉. Now,
denote P2 := {fη′ ∈ U : dh(f2, fη′) ≤ ⌈n/32⌉}. Again, we arbitrarily pick a cdf f3
from

U3 := U2 \ P2 = U \ (P1 ∪ P2),

which ensures dh(f3, f1) > ⌈n/32⌉ and dh(f3, f2) > ⌈n/32⌉. Moreover, thanks to
subproblem (c), we have card (U3) ≥ card (U2)− 2n/2 ≥ 2n − 2 · 2n/2. Then, we can
iteratively define

Pm = {fη′ ∈ U : dh(fm, fη′) ≤ ⌈n/32⌉}

and pick fm+1 from

Um+1 := Um \ Pm = U \

(
m⋃
k=1

Pm

)
,

which ensures that

for all i, j s.t. 1 ≤ i < j ≤ m+ 1, it holds that dh(fi, fj) > ⌈n/32⌉.

Note that card (Pm) ≤ 2n/2 and Um ̸= ∅, for all m = 1, 2, . . . ,M , with M =

card (U) /2n/2 = 2n/2n/2 = 2n/2 being a positive integer. We finally pick a set
of cdfs {f1, f2, . . . , fM}, such that

for all i, j s.t. 1 ≤ i < j ≤ M, we have dh(fi, fj) > ⌈n/32⌉.

Now, applying the result in subproblem (b), we obtain

for all i, j s.t. 1 ≤ i < j ≤ M, it holds that ∥fi − fj∥2 >
ϵ′

8
,

i.e., {f1, f2, . . . , fM} constitutes an ( ϵ
′

8
)-packing. Based on the definition of the
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packing number and the result in subproblem (d), we have

M(ϵ/8;F , ∥·∥2) ≥ M(ϵ′/8;F , ∥·∥2) (6)

≥ M = 2n/2 (7)

= 2⌈ϵ
−1/2⌉−2 (8)

≥ 2ϵ
−1/2−2 (9)

≥ 2ϵ
−1/4. (10)

where (10) follows from ϵ−1/2 − 2 ≥ ϵ−1/4, which is thanks to ϵ ∈ (0, ϵ0) with
ϵ0 = 1/36. Replacing ϵ/8 by ϵ in (6) and (10), and taking the logarithm, concludes
the proof with c1 = 1/32.

(f) For every ϵ > 0, we can find a positive integer Lϵ such that qLϵϵ ≥ 1. Now,
iteratively applying relation (8) from the problem statement with ϵ chosen as
ϵ, qϵ, . . . , qLϵ−1ϵ and multiplying the resulting inequalities, we obtain

N(ϵ;F , ∥·∥2) ≤

(
Lϵ−1∏
k=0

2p/(q
kϵ)

)
·N(qLϵϵ;F , ∥·∥2)

= 2(p/ϵ)
∑Lϵ−1

k=0 q−k ·N(qLϵϵ;F , ∥·∥2)

≤ 2(p/ϵ)
∑∞

k=0 q
−k ·N(qLϵϵ;F , ∥·∥2)

= 2
p

1−q−1 ϵ
−1

·N(qLϵϵ;F , ∥·∥2)

= 2
p

1−q−1 ϵ
−1

,

where the last equality follows from N(qLϵϵ;F , ∥·∥2) = 1 owing to the fact that
for all f, g ∈ F ,

∥f − g∥2 =
(∫ 1

0

|f (x)− g (x)|2dx
)1/2

≤
(∫ 1

0

1dx

)1/2

= 1 ≤ qLϵϵ,

and thus every function in F constitutes a (qLϵϵ)-covering of F . Finally, taking
the logarithm, concludes the proof with c2 =

p
1−q−1 .

(g) The statement follows immediately from

M(2ϵ;F , ∥·∥2) ≤ N(ϵ;F , ∥·∥2) ≤ M(ϵ;F , ∥·∥2),

and the results in subproblems (e) and (f).

6



Problem 3

(a) First note that F ⊆ conv(F), so that

R (F (xn
1 ) /n) ≤ R ((conv(F)) (xn

1 ) /n) . (11)

Let ∆N := {(α1, . . . , αN) ∈ [0, 1]d :
∑N

j=1 αj = 1} and FN := F × · · · × F︸ ︷︷ ︸
N times

. We have

Eε

[
sup

f∈conv(F)

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣
]
= Eε

 sup
N∈N

(α1,...,αN )∈∆N

(f1,...,fN )∈FN

∣∣∣∣∣
n∑

i=1

εi

N∑
j=1

αjfj(xi)

∣∣∣∣∣


= Eε

 sup
N∈N

(f1,...,fN )∈FN

sup
(α1,...,αN )∈∆N

∣∣∣∣∣
N∑
j=1

αj

n∑
i=1

εifj(xi)

∣∣∣∣∣


(∗)
= Eε

 sup
N∈N

(f1,...,fN )∈FN

∣∣∣∣∣
n∑

i=1

εifj∗(xi)

∣∣∣∣∣


≤ Eε

 sup
N∈N

(f1,...,fN )∈FN

sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣


= Eε

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣
]
, (12)

where in (∗) we used the fact from the hint, namely that

sup
(α1,...,αN )∈∆N

∣∣∣∣∣
N∑
j=1

αjvj

∣∣∣∣∣ = max
j∈{1,...,N}

|vj|,

v1
...
vN

 ∈ RN ,

and j∗ ∈ {1, . . . , N} is such that
∣∣∣∣ n∑
i=1

εifj∗(xi)

∣∣∣∣ = maxj∈{1,...,N}

∣∣∣∣ n∑
i=1

εifj(xi)

∣∣∣∣. Com-

bining (11) and (12) yields R (F (xn
1 ) /n) = R ((conv(F)) (xn

1 ) /n), as desired.

(b) Let W :=
⋃d

k=1{ek,−ek}, where {ek}dk=1 denotes the standard basis of Rd, i.e.,

(ek)j =

1, if k = j,

0, otherwise,
j, k ∈ {1, . . . , d}.

Consider the function class F ′ := {x 7→ ⟨x,w⟩ : w ∈ W}. It follows from Lemma
H8 in the Handout and the properties of the inner product (Definition H9 in the
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Handout) that conv(F ′) = B−1F , where B−1F := {B−1f : f ∈ F}. Application of
the result in subproblem (a) now yields

R
(
(B−1F) (xn

1 ) /n
)
= R (F ′ (xn

1 ) /n) . (13)

Using Hölder’s inequality (Lemma H7 in the Handout), we get, for w ∈ W ,

1

n

n∑
i=1

⟨xi, w⟩2 ≤
1

n

n∑
i=1

∥xi∥2∞∥w∥21 ≤ M2,

where we used that xn
1 ⊆ X = [−M,M ]d. Moreover, since F ′ is finite with |F ′| =

2d, we can apply Massart’s lemma (Lemma H4 in the Handout), as suggested by
the hint, to obtain

R (F ′ (xn
1 ) /n) ≤ M

√
2 log(2d)

n
. (14)

By definition of the empirical Rademacher complexity, we have

R
(
(B−1F) (xn

1 ) /n
)
= B−1R (F (xn

1 ) /n) . (15)

Finally, we obtain the desired result according to

R (F (xn
1 ) /n)

(15)
= BR

(
(B−1F) (xn

1 ) /n
) (13)
= BR (F ′ (xn

1 ) /n)
(14)
≤ BM

√
2 log(2d)

n
.

(c) For notational convenience, we introduce

Θ :=

{
(u1, . . . , uJ , v1, . . . , vJ) ∈ (R \ {0})J × (Rd \ {0})J :

J∑
j=1

|uj|∥vj∥1 ≤ C

}
.

Using the positive homogeneity of ρ, we compute

R (F (xn
1 ) /n) =

1

n
Eε

[
sup
θ∈Θ

∣∣∣∣∣
n∑

i=1

εi

J∑
j=1

ujρ(⟨xi, vj⟩)

∣∣∣∣∣
]

=
1

n
Eε

[
sup
θ∈Θ

∣∣∣∣∣
J∑

j=1

uj∥vj∥1
n∑

i=1

εiρ

(〈
xi,

vj
∥vj∥1

〉)∣∣∣∣∣
]

≤ C

n
Eε

[
sup
θ∈Θ

max
j∈{1,...,J}

∣∣∣∣∣
n∑

i=1

εiρ

(〈
xi,

vj
∥vj∥1

〉)∣∣∣∣∣
]

≤ C

n
Eε

[
sup

w∈Rd,∥w∥1≤1

∣∣∣∣∣
n∑

i=1

εiρ (⟨xi, w⟩)

∣∣∣∣∣
]
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= CR
(
(ρ ◦ F̃) (xn

1 ) /n
)
,

where F̃ := {x 7→ ⟨x,w⟩ : w ∈ Rd, ∥w∥1 ≤ 1}. Note that ρ is 1-Lipschitz with
ρ(0) = 0. As suggested by the hint, we can thus apply the Ledoux–Talagrand
contraction lemma (Lemma H5 in the Handout) to conclude that

R (F (xn
1 ) /n) ≤ 2CR

(
F̃ (xn

1 ) /n
)

≤ 2CM

√
2 log(2d)

n
,

as desired, where the last inequality follows from the result of subproblem (b),
particularized to the function class F̃ , with the constant B in subproblem (b)
accordingly set to 1.

(d) Let i ∈ N. Using the result from the hint, we can conclude that

R (Fi (x
n
1 ) /n) ≤

Ji∑
j=1

R
(
(σi

j ◦ Fi−1) (x
n
1 ) /n

)
,

where σi
j(·) := wi

jσ(·), j ∈ {1, . . . , Ji}. Note that σi
j is (|wi

j|L)-Lipschitz with
σi
j(0) = 0. We can thus apply the Ledoux–Talagrand contraction lemma (Lemma

H5 in the Handout) to get

R (Fi (x
n
1 ) /n) ≤

Ji∑
j=1

2|wi
j|LR (Fi−1 (x

n
1 ) /n) ≤ 2BiLR (Fi−1 (x

n
1 ) /n) , (16)

where we used in the last inequality that ∥wi∥1 ≤ Bi. It finally follows by re-
peated application of (16) that

R (FK (xn
1 ) /n) ≤ R (F0 (x

n
1 ) /n)

K∏
i=1

(2BiL) ≤ BM

√
2 log(2d)

n

K∏
i=1

(2BiL),

where the last inequality is by the result in subproblem (b).
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Problem 4

Rewriting the definition of the (ns)-th restricted isometry constant, we get that δns is
the smallest δ ≥ 0 such that∣∣∥Av∥22 − ∥v∥22

∣∣ ≤ δ∥v∥22, for all (ns)-sparse vectors v ∈ CN .

It thus suffices to show that∣∣∥Av∥22 − ∥v∥22
∣∣ ≤ ((n− 1)θs,s + δs) ∥v∥22,

for all (ns)-sparse vectors v ∈ CN . Denote by S := {j1, . . . , jns} the support set of v,
i.e., S = {j ∈ {1, . . . , N} : vj ̸= 0}, and decompose S into the subsets S1, . . . , Sn, where
Si := {j(i−1)s+1, . . . , jis}, i ∈ {1, . . . , n}. We can write

v =
n∑

i=1

vSi
. (17)

Note that vSi
and vSj

, i ̸= j, i, j ∈ {1, . . . , n}, are s-sparse and disjointly supported. The
latter property together with (17) implies

∥v∥22 =
n∑

i=1

∥vSi
∥22. (18)

We compute∣∣∥Av∥22 − ∥v∥22
∣∣ = ∣∣⟨(AHA− I)v, v⟩

∣∣
≤

n∑
i=1

n∑
j=1

∣∣⟨(AHA− I)vSi
, vSj

⟩
∣∣

=
n∑

i=1

∣∣⟨(AHA− I)vSi
, vSi

⟩
∣∣+ n∑

i,j=1
i ̸=j

∣∣⟨(AHA− I)vSi
, vSj

⟩
∣∣

(a)
=

n∑
i=1

∣∣⟨(AH
Si
ASi

− I)vSi
, vSi

⟩
∣∣+ n∑

i,j=1
i ̸=j

∣∣∣⟨AH
Sj
ASi

vSi
, vSj

⟩
∣∣∣

(b)

≤
n∑

i=1

δs∥vSi
∥22 +

n∑
i,j=1
i ̸=j

θs,s∥vSi
∥2∥vSj

∥2

= θs,s

(
n∑

i=1

∥vSi
∥2

)2

− (θs,s − δs)
n∑

i=1

∥vSi
∥22

(c)

≤ θs,sn
n∑

i=1

∥vSi
∥22 − (θs,s − δs)

n∑
i=1

∥vSi
∥22
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(d)
= ((n− 1)θs,s + δs) ∥v∥22,

where (a) follows as vSi
and vSj

, i ̸= j, i, j ∈ {1, . . . , n}, are disjointly supported and ASi

denotes the matrix obtained from A by retaining the columns indexed by Si, (b) holds
by definition of δs and θs,s, in (c) we used the Cauchy–Schwarz inequality, and (d) is a
consequence of (18).
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