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Problem 1

(@) i Let {fi}ren be the canonical dual frame of {f; }ren. By Theorem 1.22 in the
lecture notes we have that every € H can be represented by

= clk]f,

k=1

where c[k] == (z, f,). As {;}ren is also a frame, the sequence c|] is in ¢*(N).
Thus, T is surjective.
Furthermore, by Theorem 1.37 in the lecture notes, the sequence c[-] is unique.

Thus, 7' is also injective and hence bijective.

ii. Let Aand B, with 0 < A < B < oo, be the frame bounds of {fi}ren and
arbitrarily fix c[-] € (*(N). Now, we calculate
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As B < oo, we can hence conclude that 7" is a bounded operator.



iii. In the previous subtasks, we established that T : /*(N) — H is a bijective
bounded linear operator. Furthermore, we have

Té; —Zd =f;, VYjeN.

Therefore, T satisfies the requirements of Definition 1 and { f; }xen is thus a
Riesz basis for H.

(b) As {fi}ren is a Riesz basis, there exists a bijective bounded linear operator U :
¢*(N) — H such that f,, = Ud; for k € N. We first show that { f; }rcn is a frame for
H. To this end, fix z € H arbitrarily and compute

o

> e f)l? Z!wUék Zl “z, 607 = |U° |12, )

k=1

where in the last equality we used Parseval’s identity. We now bound, using
Lemma H2,
(U2 < W01l 3)

and
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As x was arbitrary, it follows from (3) and (4) that { fx }xen is a frame with frame

bounds A = |||(U*) TooETd and B = ||U*||*. The fact that ||U*]| and |||(U*)~!|| are finite

follows from Lemma H3 together with Lemma H2.

We next show that { fi } xen is exact. To this end, we fix m € N arbitrarily and show
that {fx}xsm is incomplete. First, note that by Lemma H3, (U~1)* is a bijective
bounded linear operator. Since 4,, # 0 we thus have z := (U~1)*§,, # 0.

Now we compute

<£L’, fk> = <(U71)*5m7 fk> = <5m7 Uﬁlfk> = <5m7 6k> = 07 fOI' all k # m, (5)

which establishes that { fi }x-, is incomplete and hence { f; } seny must be exact.



(c) We compute

Thus, the equation from the problem statement is satisfied with A =
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Problem 2

(a) It follows directly from the definition of f,, that f,, is right-continuous and satisfies
f7(0) =0, f,(1) = 1. To verify that f, is monotonically non-decreasing, we check
the following

(] (1—1+7]k)6/20;
e (k+1—-1+4+m)e=Fk—-14n)e+ 1+ —mp)e > (E—14n)e;
e (n—1+4+mn,)e <né <(n+1)=1.

() dn(fy, fiy) > [n/32] implies that |f,(z) — fiy(x)| = ¢ on more than [n/32] disjoint
intervals of length €, which yields

1y~ fyl2 = / (@) — fy (2)2de
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= |f77 (x)_fn’ (x)|2dx
>

> [n/32] - ()?-¢
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> N (€) €
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where the last inequality follows from (¢/)™' — 1 > (¢/)"!/2 as ¢ € (0,1/2).

(c) We note that f,, € {f,y € U : dw(f,, fry) < [n/32]} =: P, if and only if 7, differs
from 7 in at most [n/32] out of n entries, which means that P, contains no more

than
[n/32] (n> ( on )(n/:m
> <
— k [n/32]

S (32€)n/32+1

< (28)n/32+1
— 2n/4+8

< 2n/2

elements, where the last inequality follows from n > 32.

(d) Pick a maximal ¢'-packing { f1, f2, .-, fa(e;7,) }- Then, we have,
foralli,j st. 1 <i<j<M(;F,|,), itholds that ||f; — f;|l, > € > ¢,

which implies that { 1, fo, ..., far(e,7,,) } is also an e-packing. Based on the def-



(e)

inition of the packing number, we can conclude that

M(e; Fol-lly) = M5 F, 1 Mly)-

Arbitrarily pick a cdf f; from U, := U. Based on subproblem (c), the set

Pr=A{fy €U dp(fr, fy) < [n/32]}

contains no more than 2"/? elements. We then arbitrarily pick a cumulative dis-
tribution function (cdf) f, from

Z/{Q ::U1\P1 :Z/{\Pl

and note that card (Uy) > 2" —2"/2. Tt is guaranteed that d,(fs, f1) > [n/32]. Now,
denote P, := {f,y € U : dy(f2, fy) < [n/32]}. Again, we arbitrarily pick a cdf f3
from

Us :=Us \ Po=U\ (PLUP),

which ensures d;(fs, f1) > [n/32] and di(fs, f2) > [n/32]. Moreover, thanks to
subproblem (c), we have card (Us) > card (Uy) — 2%/2 > 2" — 2. 2"/2. Then, we can
iteratively define

P, ={fy €U :dy(fm, fy) < [n/32]}

and pick f,,4+1 from

Up1 = U \ P = U \ (Opm>,

k=1
which ensures that

foralli,j s.t. 1 <i<j<m+1, itholds that d,(f;, f;) > [n/32].
Note that card (P,,) < 22 and U,, # 0, for all m = 1,2,..., M, with M =
card (U) /27 = 2"/2M2 = 2"/2 being a positive integer. We finally pick a set
of cdfs {fi, fa, ..., fum}, such that

foralli,j s.t. 1 <i<j <M, wehaved,(f;, f;) > [n/32].

Now, applying the result in subproblem (b), we obtain

/

foralli,j s.t. 1 <i<j <M, itholdsthat | f; — f;|, > %,

ie., {fi, f2,..., fu} constitutes an (%)-packing. Based on the definition of the



packing number and the result in subproblem (d), we have

M{(e/8; F, |Ill,) = M(e'/8; F, |IIl,) (6)
> M = 2" (7)
_ ofe7t/21-2 (8)
> 25—1/272 9)
> ¢ /4, (10)

where (10) follows from ¢ /2 — 2 > €' /4, which is thanks to ¢ € (0, ¢) with
€0 = 1/36. Replacing €/8 by ¢ in (6) and (10), and taking the logarithm, concludes
the proof with ¢; = 1/32.

(f) For every ¢ > 0, we can find a positive integer L. such that qi<e > 1. Now,
iteratively applying relation (8) from the problem statement with e chosen as
€, g€, . . ., ¢*'e and multiplying the resulting inequalities, we obtain

Le—1
N F ) < (H 2”“‘/%)) N“eF 1)
k=0

= 2w/ IT L N (Lo F |||L,)
< 20X N (gl F ||l
— 2T N (¢ e F, ||,

1

p —
_ ——1€
= 21—¢ ,

where the last equality follows from N(q%<¢; F,|-|l,) = 1 owing to the fact that

forall f,g € F,
1 1/2
I —gll, = ( [ - g<x>|2da:)

1 1/2
([ )
0

=1 < g,
and thus every function in F constitutes a (q"<¢)-covering of F. Finally, taking
the logarithm, concludes the proof with ¢, = 1_’; —.

(g) The statement follows immediately from
M(2¢; F, |I-ll5) < N(e; F, |[-ll5) < M(e FI-]],),

and the results in subproblems (e) and (f).



Problem 3

(a) First note that 7 C conv(F), so that

R (F (21) /n) < R ((conv(F)) (x7) /n). (11)
Let Ay = {(a1,...,an) € [0,1]%: Y a;=1}and FY¥ = F x --- x F. We have
= —_——
N times
Es sup Zng<xz) = ]E’E sup Z&Za]f] .1'1
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N n
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(flv__]’\‘/'flevléle]:l\] (atyeesy an)EAN j=1 i=1
() -
=K su gifi;
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<E.| sup sup|) e&if(w)
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(fl 7777 fN)EfN
= E. [sup Z eif(x:) ] 5 (12)
Jer iz
where in (x) we used the fact from the hint, namely that
N U1
sup av;| = max |vjl, e RV,
(Oél ..... OcN)EAN ]ZI I ]e{l ,,,,, N} J
UN

and j* € {1,..., N} is such that i eifj*(xi)‘ = maxX;c(1,. N} 'Z eifi(z)|.
=1
bining (11) and (12) yields R (F (z}) /n) = R ((conv(F)) (z}) /n), as desired.

(b) Let W = Jl_,{ex, —exr}, where {e,}¢_, denotes the standard basis of R, i.e.,

1, lfk:.]/ .
(ek)j{ Jhked{l,...,d}.

0, otherwise,

Consider the function class 7' := {z — (z,w): w € W}. It follows from Lemma
HS8 in the Handout and the properties of the inner product (Definition H9 in the
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Handout) that conv(F’) = B~'F, where B~'F := {B~'f: f € F}. Application of
the result in subproblem (a) now yields

R ((B7'F) (a}) /n) = R(F' (}) /n) . (13)

Using Holder’s inequality (Lemma H7 in the Handout), we get, for w € W,

—sz, ot Zuxzu Juolf} < 0,

where we used that 27 C X = [— M, M]%. Moreover, since F is finite with |F'| =
2d, we can apply Massart’s lemma (Lemma H4 in the Handout), as suggested by
the hint, to obtain

2log(2d
R (F (af) /) < ary | 20820 (14)
By definition of the empirical Rademacher complexity, we have
R((B™'F)(xy) /n) = B'R(F (a7) /n). (15)
Finally, we obtain the desired result according to
n (15) _ n (13) L (14) 210g 2d
R(F(at) /) BR((57F) (1) fn) @ BR(F (a3) /) S By 22EED,

n

(c) For notational convenience, we introduce

O = {(ul,...,uJ,Ul,...,UJ)G(R\{O}) (Rd\{o} ZluJ‘HUJH1<C}

Using the positive homogeneity of p, we compute

R (F (z7) /n) = %Es sup | & Zu;»p((xi,vﬁ)“

96@1‘1 j=1

. %EE sup ZUJHUJH ZW (<x Hl>>u

0c®

C
< —E.|sup max €; <<$Z, >)
o [beb setion) Z PN\ Tl
. iam«xi,w»
n | weRL Jwll1 <1 |57




(d)

= CR ((po F) («}) /n).

where 7 = {z — (z,w): w € R% |w|; < 1}. Note that p is 1-Lipschitz with
p(0) = 0. As suggested by the hint, we can thus apply the Ledoux-Talagrand
contraction lemma (Lemma H5 in the Handout) to conclude that

R(F (a}) /) < 2CR (F (a2) /n)

<20M 210g(2d)7

n

as desired, where the last inequality follows from the result of subproblem (b),
particularized to the function class F, with the constant B in subproblem (b)
accordingly set to 1.

Let < € N. Using the result from the hint, we can conclude that

Ji
RUF (i) ) < 3L R((7} 0 Ficn) o) ).

where oi(-) = wio(-), j € {1,...,J;}. Note that ¢} is (|w}|L)-Lipschitz with

J

05(0) = 0. We can thus apply the Ledoux-Talagrand contraction lemma (Lemma

H5 in the Handout) to get
J;
R (Fi(at) /n) < Z Wi LR (Fiey (27) /n) < 2BiLR (Fiey («) /n) . (16)

where we used in the last inequality that ||w’|; < B;. It finally follows by re-
peated application of (16) that

K
R (Fi (x3) /n) < R (Fo () /m) [[(2B:L) <BM,/210g (2d) Hsz
=1

where the last inequality is by the result in subproblem (b).



Problem 4

Rewriting the definition of the (ns)-th restricted isometry constant, we get that 6, is
the smallest 6 > 0 such that

|| Av]|5 — [[v]l3| < 8|lv])3, for all (ns)-sparse vectors v € CV.
It thus suffices to show that
|[1Av]13 = |v]l3] < ((n— D)5+ 65) [Jvll3,

for all (ns)-sparse vectors v € CV. Denote by S := {ji,...,jns} the support set of v,
ie, S={je{l,...,N}:v; # 0}, and decompose S into the subsets S, ...,.S,, where
Si = {Ji-1)s+1,-- - Jis}, 4 € {1,...,n}. We can write

b= s, 17)
=1

Note that vg, and vs,, 7 # j, i,j € {1,...,n}, are s-sparse and disjointly supported. The
latter property together with (17) implies

(18)

lolls =

We compute
[[Av]l3 = [[vll3] = [{(A"A = D)v, v)]

< ZZ |<(AHA - I)vsi7vsj>‘

i=1 j=1

= 37 (AA = Dyus, us) [+ D [((A"A = Do, vs,)

ij=1
7]
n
(a)
i Z ’((A;Asl USN Z ’ A ]-ASI-USNUSJ->
i=1 z];é 1
i#j
S,8 j||2
7,7=1
i#]

:95,5< Y 2) _<9

<03”Z||US||2 Os,s — 0 Z|

10




—

)

= ((n - 1)95,5 + d5) ||U||§7

where (a) follows as vg, and vs,, i # j,4,j € {1,...,n}, are disjointly supported and Ag,
denotes the matrix obtained from A by retaining the columns indexed by S;, (b) holds
by definition of ¢; and 6, ;, in (c) we used the Cauchy-Schwarz inequality, and (d) is a
consequence of (18).
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